Baidu
map

Nature & NSMB:科学家阐明生物有机体中刺激作用传输的分子机制

2015-08-14 佚名 生物谷

近日,刊登在国际杂志Nature和Nature Structural and Molecular Biology上的两篇研究论文中,来自苏黎世大学等处的科学家通过研究深入解析了生物体中刺激传输的分子机制,文章中研究者重点关注所谓的G蛋白,该蛋白可以帮助传输外界刺激,外界刺激可以达到细胞内部;研究者利用一种自己开发的新型技术发现对G蛋白功能非常重要的结构,尤其是少许的氨基酸可以明显影响G蛋白的功能;

近日,刊登在国际杂志Nature和Nature Structural and Molecular Biology上的两篇研究论文中,来自苏黎世大学等处的科学家通过研究深入解析了生物体中刺激传输的分子机制,文章中研究者重点关注所谓的G蛋白,该蛋白可以帮助传输外界刺激,外界刺激可以达到细胞内部;研究者利用一种自己开发的新型技术发现对G蛋白功能非常重要的结构,尤其是少许的氨基酸可以明显影响G蛋白的功能;相关研究为改善研究者对于机体感觉及激素活动的理解,并且开发新型药物治疗相关疾病提供了新的希望。

当我们看到一个物体,那么看到物体这个过程是如何发生的呢?即来自物体反射的光进入我们的眼睛,随后神经细胞会将信号传输到大脑,大脑就会该物体的成像进行解释;信号的传输是由一种名为视紫质的蛋白质来诱发的,而视紫质是一种所谓的G蛋白偶联受体,该蛋白存在于视网膜细胞中,当光一进入眼睛中该蛋白质就会被激活。

视紫质可以扮演一种分子开关,一旦开启就会将信号传输到细胞中的G蛋白,最后就会级联放大信号并且对信号进行传递;许多对儿G蛋白及其偶联的受体都会以相同的方式来发挥功能,比如肌肉细胞中的肾上腺素受体其就可以在机体释放肾上腺素的情况下被激活。科学家们花费了大量的时间致力于研究G蛋白和其相应受体(G蛋白偶联受体GPCRs)之间的相互作用;,科学家因发现G蛋白的受体及其偶联机制分别获得了1994和2012年的诺贝尔生理学及医学奖,截止到目前研究者并不清楚G蛋白被激活的分子机制,本文研究中科学家们就揭示了在G蛋白被激活期间其形状发生改变的机制。

和所有蛋白一样,G蛋白也是由许多称之为氨基酸的元件所组成的;在蛋白质中氨基酸往往会彼此互相连接形成特殊的氨基酸序列,研究者所研究的G蛋白由354个氨基酸所组成,为了阐明该蛋白如何被激活,研究人员将组成G蛋白的每一个氨基酸进行了替换,随后他们测定了氨基酸的交换对于G蛋白激活程度的影响。

研究者Dawei Sun说道,我们发现仅有一小组大约20个氨基酸对于激活G蛋白非常关键,因此毫无疑问,通过交换组成G蛋白的特殊氨基酸对于激活该蛋白的表达具有明显的影响,同时交换其它氨基酸却对该蛋白没有任何影响;随后研究者检测了必要的氨基酸对G蛋白形状改变的影响,G蛋白的形状改变可以帮助组装其在失活状态下的双螺旋结构;当关键的氨基酸被开启后G蛋白的双螺旋结构就会缺乏扭曲,这或许就可以帮助阐明双螺旋结构为何会在G蛋白激活的过程中短暂地消失。

本文研究的结果并不限于单一的蛋白质,这种新发现的机制是普遍存在的,换句话说,其不仅参与了本文中所研究的G蛋白的激活,而且还参与了所有G蛋白的激活过程;文章中研究者发现了对G蛋白激活非常重要的氨基酸序列,这对于后期开发通过激活GPCR受体及相关G蛋白的新型药物来治疗相关的疾病提供了一定帮助,该研究对未来研究的帮助不可估量,如今大约30%的可用药物都是以这种机制来释放作用的,而且作用效果甚至在G蛋白之上;本文研究对于研究其它重要的蛋白质帮助理解蛋白质的激活机制提供了新的思路和帮助。

原文出处:

Tilman Flock, Charles N. J.et al.Universal allosteric mechanism for Gα activation by GPCRs .NATURE.2015

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (2)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=1880770, encodeId=57f21880e70ed, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=79, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Fri Aug 28 06:59:00 CST 2015, time=2015-08-28, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1798541, encodeId=12e21e9854194, content=<a href='/topic/show?id=c60a693529b' target=_blank style='color:#2F92EE;'>#生物有机#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=77, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=69352, encryptionId=c60a693529b, topicName=生物有机)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=0cd7162, createdName=nakerunner, createdTime=Fri Mar 11 03:59:00 CST 2016, time=2016-03-11, status=1, ipAttribution=)]
    2015-08-28 liye789132251
  2. [GetPortalCommentsPageByObjectIdResponse(id=1880770, encodeId=57f21880e70ed, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=79, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Fri Aug 28 06:59:00 CST 2015, time=2015-08-28, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1798541, encodeId=12e21e9854194, content=<a href='/topic/show?id=c60a693529b' target=_blank style='color:#2F92EE;'>#生物有机#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=77, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=69352, encryptionId=c60a693529b, topicName=生物有机)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=0cd7162, createdName=nakerunner, createdTime=Fri Mar 11 03:59:00 CST 2016, time=2016-03-11, status=1, ipAttribution=)]

相关资讯

Sci Rep: 新型纳米药物,特异性杀伤肿瘤细胞!

Dalhousie医学院的研究人员开发了一种运送化疗药物的新方式。利用纳米科技,这种新型药物运送系统仅仅在肿瘤细胞释放药物,从而保护健康细胞不受伤害。这项研究工作于近日发表在Scientific Reports杂志上。Naga Puvvada博士是Dalhousie医学New Brunswick (DMNB)的一名博后,他发明了药物运送系统。他与DMNB的Keith Brunt博士,及美国和印

央视:中国将启动精准医疗计划

7月29日,在央视新闻频道播出的《朝闻天下》及《新闻直播间》节目中,分别大篇幅地报导了“精准医疗”这一热门话题。主持人和节目组详细介绍了“精准医疗”的概念、发展和应用,并透露:中国正筹建自己的人群全基因组数据库和样本库,为精准医疗奠定基础。 央视解读“精准医疗” 据中国医学科学院副院长、国家精准医疗战略专家组负责人詹启敏院士介绍,精准医疗是应用现代遗传技术、分子影像技术、生物信息技术,结

Cell Stem Cell:科幻成为现实,神秘配方实现“身份交换”

由皮肤成纤维细胞转变的神经细胞 最新的Cell Stem Cell上刊登了两个中国研究小组的研究。他们使用不同的方法完成了相同的生物身份交换:皮肤细胞变为神经细胞。这两种方法,都仅仅是在细胞中添加一些化学物质,这或会开创用自身细胞治疗疾病的新起点。当科学家想将一种类型的细胞转变成另一种或者变成更基本的干细胞,大部分都取决于向原始细胞添加的基因。但这种基因插入方法也有缺点:复杂的步骤,费时。而

反转基因人士调查科学家与产业关系

孟山都公司与科学家的关系成为反转基因团体的调查目标。图片来源:Daniel Acker/Bloomberg/Getty 近日,对于转基因生物体反对者要求阅读自己的邮件,美国华盛顿州立大学营养学家Michelle McGuire感到十分震惊。 加州奥克兰“我们有权知道”依照《信息自由法案》申请阅读McGuire与约36个组织和公司的通信。McGuire是40位被该组织定为目标的研究人员之一

BJN:控制机体炎性或可降低患慢性疾病的风险

一种未知的炎性反应或可参与人类疾病早期阶段的发生,而控制炎症对于维持人类健康以及开发新型靶向疗法非常重要,近日一项刊登在国际杂志British Journal of Nutrition上的研究论文中,来自东英吉利亚大学的研究人员通过研究揭示了营养物如何影响机体的炎性过程及帮助减少慢性疾病的风险。 炎症是宿主实施防御机制的一种正常组分,但未知的慢性炎症水平的升高或许是一系列慢性疾病的核心扰动;

Nature:高分辨率3D成像技术或可阐明肌肉细胞线粒体的能量网络

2015年8月3日 讯 /生物谷BIOON/ --近日,一项刊登在国际杂志Nature上的研究报告推翻了长期以来科学界的一种观点,即能量如何分布在肌肉中来进行运动的,科学家首次发现肌肉细胞可以通过在线粒体网络中进行电荷的快速传导来分布能量,该研究或为有效阐明线粒体能量工厂为肌肉收缩功能的分子机制提供了新的思路,同时也为理解机体和能量利用相关的疾病发的机体提供了一定的线索。 研究者Robert

Baidu
map
Baidu
map
Baidu
map