PNAS:一种新型纳米孔测序技术获突破
2016-04-24 MedSci MedSci原创
经济高效的单分子测序平台能为人们提供很大的帮助,比如破解完整基因组序列、确定单倍型和鉴定mRNA可变剪接。为此,哥伦比亚大学的车靖岳(Jingyue Ju)和哈佛大学的George Church教授合作开发了基于纳米孔的单分子边合成边测序(SBS)系统。他们给四种核苷酸分别标记上不同的聚合物。聚合酶会将标记的核苷酸添加到延伸中的DNA链上,同时释放出聚合物标签。这些标签随后通过纳米孔,引起纳米孔电
经济高效的单分子测序平台能为人们提供很大的帮助,比如破解完整基因组序列、确定单倍型和鉴定mRNA可变剪接。为此,哥伦比亚大学的车靖岳(Jingyue Ju)和哈佛大学的George Church教授合作开发了基于纳米孔的单分子边合成边测序(SBS)系统。
他们给四种核苷酸分别标记上不同的聚合物。聚合酶会将标记的核苷酸添加到延伸中的DNA链上,同时释放出聚合物标签。这些标签随后通过纳米孔,引起纳米孔电流的改变。检测这些标签造成的电信号差异,就可以准确分辨相应的碱基。
Jingyue Ju的George Church的研究团队最近对这一测序技术进行升级,打造了高通量的单分子纳米孔测序平台。这一重要成果发表在美国国家科学院院刊PNAS杂志上。Jingyue Ju是基因测序领域的专家,曾发明四色可逆终止子测序技术。George Church被誉为是个人基因组学和合成生物学的先锋。1984年Church等人发表了首个直接基因组测序方法,该文章中的一些策略现在仍应用在二代测序技术中。此外,如今的多重化分子技术和条码式标签也是他发明的,Church还是纳米孔测序技术的发明者之一。
研究人员将聚合酶拴系在α-hemolysin纳米孔上,在芯片上排出纳米孔阵列。随后他们用多重化的纳米孔传感器搭建了高通量的测序平台。这个平台使用多聚物标记的核苷酸,可以在单分子水平上对多个DNA模板进行平行测序。研究人员通过这种方式获得了实时的单分子测序数据,分辨率达到了单碱基水平。
纵观测序技术的发展历程,没有哪一个技术像纳米孔测序那样慢热,但也没有哪一个技术像纳米孔测序这么接近普罗大众。将单链DNA拉过蛋白孔,检测碱基穿过时电导的微小改变,纳米孔测序的这一基础理念已经有十几年历史了。从第一篇论文到纳米孔测序的成形,这条道路并不是一帆风顺的。研究者们产生了很多分歧,也遇到了大量的技术死胡同。
原始出处:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
#PNAS#
57
#纳米孔#
73
又是一突破
108
不错,学习中,赞一个
166
纳米技术在未来很有前途。
166