Baidu
map

做临床预测模型一定要学R语言吗?

2021-10-20 MedSci原创 MedSci原创

如何利用临床预测模型发表高分SCI-问题2

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (3)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=1707305, encodeId=99861e0730511, content=<a href='/topic/show?id=e67515e829a' target=_blank style='color:#2F92EE;'>#R语言#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=70, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=15782, encryptionId=e67515e829a, topicName=R语言)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=83ed31375064, createdName=ms2186806800017884, createdTime=Thu Dec 02 17:05:43 CST 2021, time=2021-12-02, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1262821, encodeId=5fb712628214d, content=<a href='/topic/show?id=52941002359d' target=_blank style='color:#2F92EE;'>#预测模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=64, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=100235, encryptionId=52941002359d, topicName=预测模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=c3ff68, createdName=维他命, createdTime=Fri Oct 22 01:05:43 CST 2021, time=2021-10-22, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1418223, encodeId=bd861418223ee, content=<a href='/topic/show?id=a4719180605' target=_blank style='color:#2F92EE;'>#语言#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=102, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=91806, encryptionId=a4719180605, topicName=语言)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=c16b3335392, createdName=yangjxjc, createdTime=Fri Oct 22 01:05:43 CST 2021, time=2021-10-22, status=1, ipAttribution=)]
  2. [GetPortalCommentsPageByObjectIdResponse(id=1707305, encodeId=99861e0730511, content=<a href='/topic/show?id=e67515e829a' target=_blank style='color:#2F92EE;'>#R语言#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=70, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=15782, encryptionId=e67515e829a, topicName=R语言)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=83ed31375064, createdName=ms2186806800017884, createdTime=Thu Dec 02 17:05:43 CST 2021, time=2021-12-02, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1262821, encodeId=5fb712628214d, content=<a href='/topic/show?id=52941002359d' target=_blank style='color:#2F92EE;'>#预测模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=64, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=100235, encryptionId=52941002359d, topicName=预测模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=c3ff68, createdName=维他命, createdTime=Fri Oct 22 01:05:43 CST 2021, time=2021-10-22, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1418223, encodeId=bd861418223ee, content=<a href='/topic/show?id=a4719180605' target=_blank style='color:#2F92EE;'>#语言#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=102, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=91806, encryptionId=a4719180605, topicName=语言)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=c16b3335392, createdName=yangjxjc, createdTime=Fri Oct 22 01:05:43 CST 2021, time=2021-10-22, status=1, ipAttribution=)]
  3. [GetPortalCommentsPageByObjectIdResponse(id=1707305, encodeId=99861e0730511, content=<a href='/topic/show?id=e67515e829a' target=_blank style='color:#2F92EE;'>#R语言#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=70, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=15782, encryptionId=e67515e829a, topicName=R语言)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=83ed31375064, createdName=ms2186806800017884, createdTime=Thu Dec 02 17:05:43 CST 2021, time=2021-12-02, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1262821, encodeId=5fb712628214d, content=<a href='/topic/show?id=52941002359d' target=_blank style='color:#2F92EE;'>#预测模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=64, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=100235, encryptionId=52941002359d, topicName=预测模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=c3ff68, createdName=维他命, createdTime=Fri Oct 22 01:05:43 CST 2021, time=2021-10-22, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1418223, encodeId=bd861418223ee, content=<a href='/topic/show?id=a4719180605' target=_blank style='color:#2F92EE;'>#语言#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=102, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=91806, encryptionId=a4719180605, topicName=语言)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=c16b3335392, createdName=yangjxjc, createdTime=Fri Oct 22 01:05:43 CST 2021, time=2021-10-22, status=1, ipAttribution=)]
    2021-10-22 yangjxjc

相关资讯

不平衡数据机器学习的四种处理策略---采用R语言实现

在对不平衡的分类数据集进行建模时,机器学习算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性。实际上,经典的统计学建模(如回归),同样也是不稳定的。那么,这种结果是为何发生的呢?到底是什么因素影响了这些算法的表现? 在不平衡的数据中,任一算法都没法从样本量少的类中获取足够的信息来进行精确预测。因此,机器学习算法常常被要求应用在平衡数据集上。那我们该如何处理不平衡数据

用R语言巧妙处理不平衡数据的方法

在对不平衡的分类数据集进行建模时,机器学**算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性那么,这种结果是为何发生的呢?到底是什么因素影响了这些算法的表现?   在不平衡的数据中,任一算法都没法从样本量少的类中获取足够的信息来进行精确预测因此,机器学**算法常常被要求应用在平衡数据集上那我们该如何处理不平衡数据集?本文会介绍一些相关方

Baidu
map
Baidu
map
Baidu
map