数据科学三原则:可预测性,稳定性和可计算性
2017-03-21 郁彬 统计之都
简介:郁彬,加州大学伯克利分校统计系及电气工程与计算机科学系校长教授,加州大学伯克利分校统计系前系主任。她同时是北京大学微软统计与信息技术教育部-微软重点实验室的创办者及联席主任。她与基因组学、神经科学、医学领域科学家合作进行跨学科研究,开发了统计和机器学习方法/算法和理论,并与领域知识以及量化批判思维结合以解决这些领域中的数据问题。郁彬教授是美国国家科学院和美国艺术与科学学院两院院士。200
简介:郁彬,加州大学伯克利分校统计系及电气工程与计算机科学系校长教授,加州大学伯克利分校统计系前系主任。她同时是北京大学微软统计与信息技术教育部-微软重点实验室的创办者及联席主任。她与基因组学、神经科学、医学领域科学家合作进行跨学科研究,开发了统计和机器学习方法/算法和理论,并与领域知识以及量化批判思维结合以解决这些领域中的数据问题。郁彬教授是美国国家科学院和美国艺术与科学学院两院院士。2006年当选Guggenheim Fellow,2011年受邀在ICIAM(The International Council for Industrial and Applied Mathematics,国际工业与应用数学大会)作特邀演讲,2012年作了伯努利协会的图基纪念演讲(Turkey Memorial Lecture of the Bernoulli Society),2016年作IMS(Institution of Mathematical Statistics,数理统计协会)Rietz演讲。郁彬教授曾于2013-2014年出任IMS主席,也是IMS、ASA(American Statis
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
#数据科学#
67
#稳定性#
56
以预测为目标,以计算为核心,机器学习让数据驱动取得了广泛的成功
91