Baidu
map

logistic回归还是log-binomial回归?RR如何正确估计?

2016-06-17 张华 赵一鸣 临床流行病学和循证医学

当结局发生率较大时,再使用OR来估计RR时会不准确,建议当结局发生率大于10%时,使用log-binomial回归方法替代logistic回归。 Log-binomial 回归模型是广义线性模型的一种特殊类型,由于它很容易得到某一因素率比( rate ratio, RR) 的最大似然估计值,因此,能够作为干预效应评价的选择方法。流行病学暴露于结局的关联性研究中(队列研究),当结局事件发生率较为罕

当结局发生率较大时,再使用OR来估计RR时会不准确,建议当结局发生率大于10%时,使用log-binomial回归方法替代logistic回归。 Log-binomial 回归模型是广义线性模型的一种特殊类型,由于它很容易得到某一因素率比( rate ratio, RR) 的最大似然估计值,因此,能够作为干预效应评价的选择方法。流行病学暴露于结局的关联性研究中(队列研究),当结局事件发生率较为罕见(如小于10%)时,OR近似等于RR,否则使用OR来估计RR时会不准确,使用OR会高估RR,建议使用log-binomial回归方法替代logistic回归。 假定反应变量服从二项分布,连接函数为对数连接的这样一种广义线性模型类型通常被称为log-binomial 回归模型。它一般的模型结构如式(1) 表示: lnp = β0 + ∑βiXi + e 空格式(1)中,p为结局出现的概率,误差项e是随机项。该模型利用最大似然估计参数β时需要β0+ ∑βiXi≤0。在SAS软件中,该模型能够通过Proc GENMOD程序,在模型参数中设定DISTRIBUTION = bin LINK = log

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (9)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=1196709, encodeId=55971196e0992, content=第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?自变量往往有多个分类,是自变量的某一类比其他类发生率高得多,还是每一类都比较高?, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220517/aac2a6027a624e1db615360950e074db/0cd38e643a0f465889db6fc520bb47ca.jpg, createdBy=a3065249961, createdName=147dc0c2m38(暂无昵称), createdTime=Thu Feb 24 09:32:02 CST 2022, time=2022-02-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1196706, encodeId=cca31196e06f0, content=第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?因变量往往有多个分类,是因变量的某一类比其他类发生率高得多,还是每一类都比较高?, beContent=null, objectType=article, channel=null, level=null, likeNumber=64, replyNumber=1, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220517/aac2a6027a624e1db615360950e074db/0cd38e643a0f465889db6fc520bb47ca.jpg, createdBy=a3065249961, createdName=147dc0c2m38(暂无昵称), createdTime=Thu Feb 24 09:30:04 CST 2022, time=2022-02-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=888542, encodeId=03c1888542a4, content=请问一下,在R语言中怎么进行设定log-binomial model呢? , beContent=null, objectType=article, channel=null, level=null, likeNumber=82, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=350a5255931, createdName=147f0408m36(暂无昵称), createdTime=Sat Sep 26 14:53:55 CST 2020, time=2020-09-26, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1746735, encodeId=48371e46735f2, content=<a href='/topic/show?id=88e91099e10' target=_blank style='color:#2F92EE;'>#logistic回归#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=60, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=10997, encryptionId=88e91099e10, topicName=logistic回归)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=d3c135838005, createdName=xlwang2703, createdTime=Thu Aug 11 17:08:00 CST 2016, time=2016-08-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1905764, encodeId=bc661905e6484, content=<a href='/topic/show?id=9dc4109964f' target=_blank style='color:#2F92EE;'>#Logistic#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=60, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=10996, encryptionId=9dc4109964f, topicName=Logistic)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=afa4194, createdName=cenghis, createdTime=Fri May 12 02:08:00 CST 2017, time=2017-05-12, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1455121, encodeId=e7371455121ca, content=<a href='/topic/show?id=bebe8032fc' target=_blank style='color:#2F92EE;'>#GIST#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=45, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=8032, encryptionId=bebe8032fc, topicName=GIST)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=6e445632366, createdName=july_977, createdTime=Sun Jun 19 02:08:00 CST 2016, time=2016-06-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=90422, encodeId=a4899042205, content=好文章,值得学习, beContent=null, objectType=article, channel=null, level=null, likeNumber=173, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=53751677671, createdName=沉心多思, createdTime=Sat Jun 18 18:16:00 CST 2016, time=2016-06-18, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=90241, encodeId=c4f99024186, content=有些看不懂, beContent=null, objectType=article, channel=null, level=null, likeNumber=147, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20200609/ef6a57dbe7f1489dad7446b7c5217858/d5e4fe65996c4446a029b0f5d056abb1.jpg, createdBy=6b011518214, createdName=午夜星河, createdTime=Fri Jun 17 21:30:00 CST 2016, time=2016-06-17, status=1, ipAttribution=)]
    2022-02-24 147dc0c2m38(暂无昵称)

    第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?自变量往往有多个分类,是自变量的某一类比其他类发生率高得多,还是每一类都比较高?

    0

  2. [GetPortalCommentsPageByObjectIdResponse(id=1196709, encodeId=55971196e0992, content=第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?自变量往往有多个分类,是自变量的某一类比其他类发生率高得多,还是每一类都比较高?, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220517/aac2a6027a624e1db615360950e074db/0cd38e643a0f465889db6fc520bb47ca.jpg, createdBy=a3065249961, createdName=147dc0c2m38(暂无昵称), createdTime=Thu Feb 24 09:32:02 CST 2022, time=2022-02-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1196706, encodeId=cca31196e06f0, content=第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?因变量往往有多个分类,是因变量的某一类比其他类发生率高得多,还是每一类都比较高?, beContent=null, objectType=article, channel=null, level=null, likeNumber=64, replyNumber=1, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220517/aac2a6027a624e1db615360950e074db/0cd38e643a0f465889db6fc520bb47ca.jpg, createdBy=a3065249961, createdName=147dc0c2m38(暂无昵称), createdTime=Thu Feb 24 09:30:04 CST 2022, time=2022-02-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=888542, encodeId=03c1888542a4, content=请问一下,在R语言中怎么进行设定log-binomial model呢? , beContent=null, objectType=article, channel=null, level=null, likeNumber=82, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=350a5255931, createdName=147f0408m36(暂无昵称), createdTime=Sat Sep 26 14:53:55 CST 2020, time=2020-09-26, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1746735, encodeId=48371e46735f2, content=<a href='/topic/show?id=88e91099e10' target=_blank style='color:#2F92EE;'>#logistic回归#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=60, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=10997, encryptionId=88e91099e10, topicName=logistic回归)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=d3c135838005, createdName=xlwang2703, createdTime=Thu Aug 11 17:08:00 CST 2016, time=2016-08-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1905764, encodeId=bc661905e6484, content=<a href='/topic/show?id=9dc4109964f' target=_blank style='color:#2F92EE;'>#Logistic#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=60, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=10996, encryptionId=9dc4109964f, topicName=Logistic)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=afa4194, createdName=cenghis, createdTime=Fri May 12 02:08:00 CST 2017, time=2017-05-12, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1455121, encodeId=e7371455121ca, content=<a href='/topic/show?id=bebe8032fc' target=_blank style='color:#2F92EE;'>#GIST#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=45, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=8032, encryptionId=bebe8032fc, topicName=GIST)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=6e445632366, createdName=july_977, createdTime=Sun Jun 19 02:08:00 CST 2016, time=2016-06-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=90422, encodeId=a4899042205, content=好文章,值得学习, beContent=null, objectType=article, channel=null, level=null, likeNumber=173, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=53751677671, createdName=沉心多思, createdTime=Sat Jun 18 18:16:00 CST 2016, time=2016-06-18, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=90241, encodeId=c4f99024186, content=有些看不懂, beContent=null, objectType=article, channel=null, level=null, likeNumber=147, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20200609/ef6a57dbe7f1489dad7446b7c5217858/d5e4fe65996c4446a029b0f5d056abb1.jpg, createdBy=6b011518214, createdName=午夜星河, createdTime=Fri Jun 17 21:30:00 CST 2016, time=2016-06-17, status=1, ipAttribution=)]
    2022-02-24 147dc0c2m38(暂无昵称)

    第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?因变量往往有多个分类,是因变量的某一类比其他类发生率高得多,还是每一类都比较高?

    1

    展开1条回复
  3. [GetPortalCommentsPageByObjectIdResponse(id=1196709, encodeId=55971196e0992, content=第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?自变量往往有多个分类,是自变量的某一类比其他类发生率高得多,还是每一类都比较高?, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220517/aac2a6027a624e1db615360950e074db/0cd38e643a0f465889db6fc520bb47ca.jpg, createdBy=a3065249961, createdName=147dc0c2m38(暂无昵称), createdTime=Thu Feb 24 09:32:02 CST 2022, time=2022-02-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1196706, encodeId=cca31196e06f0, content=第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?因变量往往有多个分类,是因变量的某一类比其他类发生率高得多,还是每一类都比较高?, beContent=null, objectType=article, channel=null, level=null, likeNumber=64, replyNumber=1, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220517/aac2a6027a624e1db615360950e074db/0cd38e643a0f465889db6fc520bb47ca.jpg, createdBy=a3065249961, createdName=147dc0c2m38(暂无昵称), createdTime=Thu Feb 24 09:30:04 CST 2022, time=2022-02-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=888542, encodeId=03c1888542a4, content=请问一下,在R语言中怎么进行设定log-binomial model呢? , beContent=null, objectType=article, channel=null, level=null, likeNumber=82, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=350a5255931, createdName=147f0408m36(暂无昵称), createdTime=Sat Sep 26 14:53:55 CST 2020, time=2020-09-26, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1746735, encodeId=48371e46735f2, content=<a href='/topic/show?id=88e91099e10' target=_blank style='color:#2F92EE;'>#logistic回归#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=60, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=10997, encryptionId=88e91099e10, topicName=logistic回归)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=d3c135838005, createdName=xlwang2703, createdTime=Thu Aug 11 17:08:00 CST 2016, time=2016-08-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1905764, encodeId=bc661905e6484, content=<a href='/topic/show?id=9dc4109964f' target=_blank style='color:#2F92EE;'>#Logistic#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=60, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=10996, encryptionId=9dc4109964f, topicName=Logistic)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=afa4194, createdName=cenghis, createdTime=Fri May 12 02:08:00 CST 2017, time=2017-05-12, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1455121, encodeId=e7371455121ca, content=<a href='/topic/show?id=bebe8032fc' target=_blank style='color:#2F92EE;'>#GIST#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=45, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=8032, encryptionId=bebe8032fc, topicName=GIST)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=6e445632366, createdName=july_977, createdTime=Sun Jun 19 02:08:00 CST 2016, time=2016-06-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=90422, encodeId=a4899042205, content=好文章,值得学习, beContent=null, objectType=article, channel=null, level=null, likeNumber=173, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=53751677671, createdName=沉心多思, createdTime=Sat Jun 18 18:16:00 CST 2016, time=2016-06-18, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=90241, encodeId=c4f99024186, content=有些看不懂, beContent=null, objectType=article, channel=null, level=null, likeNumber=147, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20200609/ef6a57dbe7f1489dad7446b7c5217858/d5e4fe65996c4446a029b0f5d056abb1.jpg, createdBy=6b011518214, createdName=午夜星河, createdTime=Fri Jun 17 21:30:00 CST 2016, time=2016-06-17, status=1, ipAttribution=)]
    2020-09-26 147f0408m36(暂无昵称)

    请问一下,在R语言中怎么进行设定log-binomial model呢?

    0

  4. [GetPortalCommentsPageByObjectIdResponse(id=1196709, encodeId=55971196e0992, content=第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?自变量往往有多个分类,是自变量的某一类比其他类发生率高得多,还是每一类都比较高?, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220517/aac2a6027a624e1db615360950e074db/0cd38e643a0f465889db6fc520bb47ca.jpg, createdBy=a3065249961, createdName=147dc0c2m38(暂无昵称), createdTime=Thu Feb 24 09:32:02 CST 2022, time=2022-02-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1196706, encodeId=cca31196e06f0, content=第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?因变量往往有多个分类,是因变量的某一类比其他类发生率高得多,还是每一类都比较高?, beContent=null, objectType=article, channel=null, level=null, likeNumber=64, replyNumber=1, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220517/aac2a6027a624e1db615360950e074db/0cd38e643a0f465889db6fc520bb47ca.jpg, createdBy=a3065249961, createdName=147dc0c2m38(暂无昵称), createdTime=Thu Feb 24 09:30:04 CST 2022, time=2022-02-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=888542, encodeId=03c1888542a4, content=请问一下,在R语言中怎么进行设定log-binomial model呢? , beContent=null, objectType=article, channel=null, level=null, likeNumber=82, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=350a5255931, createdName=147f0408m36(暂无昵称), createdTime=Sat Sep 26 14:53:55 CST 2020, time=2020-09-26, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1746735, encodeId=48371e46735f2, content=<a href='/topic/show?id=88e91099e10' target=_blank style='color:#2F92EE;'>#logistic回归#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=60, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=10997, encryptionId=88e91099e10, topicName=logistic回归)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=d3c135838005, createdName=xlwang2703, createdTime=Thu Aug 11 17:08:00 CST 2016, time=2016-08-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1905764, encodeId=bc661905e6484, content=<a href='/topic/show?id=9dc4109964f' target=_blank style='color:#2F92EE;'>#Logistic#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=60, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=10996, encryptionId=9dc4109964f, topicName=Logistic)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=afa4194, createdName=cenghis, createdTime=Fri May 12 02:08:00 CST 2017, time=2017-05-12, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1455121, encodeId=e7371455121ca, content=<a href='/topic/show?id=bebe8032fc' target=_blank style='color:#2F92EE;'>#GIST#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=45, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=8032, encryptionId=bebe8032fc, topicName=GIST)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=6e445632366, createdName=july_977, createdTime=Sun Jun 19 02:08:00 CST 2016, time=2016-06-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=90422, encodeId=a4899042205, content=好文章,值得学习, beContent=null, objectType=article, channel=null, level=null, likeNumber=173, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=53751677671, createdName=沉心多思, createdTime=Sat Jun 18 18:16:00 CST 2016, time=2016-06-18, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=90241, encodeId=c4f99024186, content=有些看不懂, beContent=null, objectType=article, channel=null, level=null, likeNumber=147, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20200609/ef6a57dbe7f1489dad7446b7c5217858/d5e4fe65996c4446a029b0f5d056abb1.jpg, createdBy=6b011518214, createdName=午夜星河, createdTime=Fri Jun 17 21:30:00 CST 2016, time=2016-06-17, status=1, ipAttribution=)]
  5. [GetPortalCommentsPageByObjectIdResponse(id=1196709, encodeId=55971196e0992, content=第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?自变量往往有多个分类,是自变量的某一类比其他类发生率高得多,还是每一类都比较高?, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220517/aac2a6027a624e1db615360950e074db/0cd38e643a0f465889db6fc520bb47ca.jpg, createdBy=a3065249961, createdName=147dc0c2m38(暂无昵称), createdTime=Thu Feb 24 09:32:02 CST 2022, time=2022-02-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1196706, encodeId=cca31196e06f0, content=第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?因变量往往有多个分类,是因变量的某一类比其他类发生率高得多,还是每一类都比较高?, beContent=null, objectType=article, channel=null, level=null, likeNumber=64, replyNumber=1, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220517/aac2a6027a624e1db615360950e074db/0cd38e643a0f465889db6fc520bb47ca.jpg, createdBy=a3065249961, createdName=147dc0c2m38(暂无昵称), createdTime=Thu Feb 24 09:30:04 CST 2022, time=2022-02-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=888542, encodeId=03c1888542a4, content=请问一下,在R语言中怎么进行设定log-binomial model呢? , beContent=null, objectType=article, channel=null, level=null, likeNumber=82, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=350a5255931, createdName=147f0408m36(暂无昵称), createdTime=Sat Sep 26 14:53:55 CST 2020, time=2020-09-26, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1746735, encodeId=48371e46735f2, content=<a href='/topic/show?id=88e91099e10' target=_blank style='color:#2F92EE;'>#logistic回归#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=60, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=10997, encryptionId=88e91099e10, topicName=logistic回归)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=d3c135838005, createdName=xlwang2703, createdTime=Thu Aug 11 17:08:00 CST 2016, time=2016-08-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1905764, encodeId=bc661905e6484, content=<a href='/topic/show?id=9dc4109964f' target=_blank style='color:#2F92EE;'>#Logistic#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=60, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=10996, encryptionId=9dc4109964f, topicName=Logistic)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=afa4194, createdName=cenghis, createdTime=Fri May 12 02:08:00 CST 2017, time=2017-05-12, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1455121, encodeId=e7371455121ca, content=<a href='/topic/show?id=bebe8032fc' target=_blank style='color:#2F92EE;'>#GIST#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=45, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=8032, encryptionId=bebe8032fc, topicName=GIST)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=6e445632366, createdName=july_977, createdTime=Sun Jun 19 02:08:00 CST 2016, time=2016-06-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=90422, encodeId=a4899042205, content=好文章,值得学习, beContent=null, objectType=article, channel=null, level=null, likeNumber=173, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=53751677671, createdName=沉心多思, createdTime=Sat Jun 18 18:16:00 CST 2016, time=2016-06-18, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=90241, encodeId=c4f99024186, content=有些看不懂, beContent=null, objectType=article, channel=null, level=null, likeNumber=147, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20200609/ef6a57dbe7f1489dad7446b7c5217858/d5e4fe65996c4446a029b0f5d056abb1.jpg, createdBy=6b011518214, createdName=午夜星河, createdTime=Fri Jun 17 21:30:00 CST 2016, time=2016-06-17, status=1, ipAttribution=)]
    2017-05-12 cenghis
  6. [GetPortalCommentsPageByObjectIdResponse(id=1196709, encodeId=55971196e0992, content=第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?自变量往往有多个分类,是自变量的某一类比其他类发生率高得多,还是每一类都比较高?, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220517/aac2a6027a624e1db615360950e074db/0cd38e643a0f465889db6fc520bb47ca.jpg, createdBy=a3065249961, createdName=147dc0c2m38(暂无昵称), createdTime=Thu Feb 24 09:32:02 CST 2022, time=2022-02-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1196706, encodeId=cca31196e06f0, content=第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?因变量往往有多个分类,是因变量的某一类比其他类发生率高得多,还是每一类都比较高?, beContent=null, objectType=article, channel=null, level=null, likeNumber=64, replyNumber=1, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220517/aac2a6027a624e1db615360950e074db/0cd38e643a0f465889db6fc520bb47ca.jpg, createdBy=a3065249961, createdName=147dc0c2m38(暂无昵称), createdTime=Thu Feb 24 09:30:04 CST 2022, time=2022-02-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=888542, encodeId=03c1888542a4, content=请问一下,在R语言中怎么进行设定log-binomial model呢? , beContent=null, objectType=article, channel=null, level=null, likeNumber=82, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=350a5255931, createdName=147f0408m36(暂无昵称), createdTime=Sat Sep 26 14:53:55 CST 2020, time=2020-09-26, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1746735, encodeId=48371e46735f2, content=<a href='/topic/show?id=88e91099e10' target=_blank style='color:#2F92EE;'>#logistic回归#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=60, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=10997, encryptionId=88e91099e10, topicName=logistic回归)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=d3c135838005, createdName=xlwang2703, createdTime=Thu Aug 11 17:08:00 CST 2016, time=2016-08-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1905764, encodeId=bc661905e6484, content=<a href='/topic/show?id=9dc4109964f' target=_blank style='color:#2F92EE;'>#Logistic#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=60, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=10996, encryptionId=9dc4109964f, topicName=Logistic)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=afa4194, createdName=cenghis, createdTime=Fri May 12 02:08:00 CST 2017, time=2017-05-12, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1455121, encodeId=e7371455121ca, content=<a href='/topic/show?id=bebe8032fc' target=_blank style='color:#2F92EE;'>#GIST#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=45, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=8032, encryptionId=bebe8032fc, topicName=GIST)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=6e445632366, createdName=july_977, createdTime=Sun Jun 19 02:08:00 CST 2016, time=2016-06-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=90422, encodeId=a4899042205, content=好文章,值得学习, beContent=null, objectType=article, channel=null, level=null, likeNumber=173, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=53751677671, createdName=沉心多思, createdTime=Sat Jun 18 18:16:00 CST 2016, time=2016-06-18, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=90241, encodeId=c4f99024186, content=有些看不懂, beContent=null, objectType=article, channel=null, level=null, likeNumber=147, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20200609/ef6a57dbe7f1489dad7446b7c5217858/d5e4fe65996c4446a029b0f5d056abb1.jpg, createdBy=6b011518214, createdName=午夜星河, createdTime=Fri Jun 17 21:30:00 CST 2016, time=2016-06-17, status=1, ipAttribution=)]
    2016-06-19 july_977
  7. [GetPortalCommentsPageByObjectIdResponse(id=1196709, encodeId=55971196e0992, content=第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?自变量往往有多个分类,是自变量的某一类比其他类发生率高得多,还是每一类都比较高?, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220517/aac2a6027a624e1db615360950e074db/0cd38e643a0f465889db6fc520bb47ca.jpg, createdBy=a3065249961, createdName=147dc0c2m38(暂无昵称), createdTime=Thu Feb 24 09:32:02 CST 2022, time=2022-02-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1196706, encodeId=cca31196e06f0, content=第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?因变量往往有多个分类,是因变量的某一类比其他类发生率高得多,还是每一类都比较高?, beContent=null, objectType=article, channel=null, level=null, likeNumber=64, replyNumber=1, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220517/aac2a6027a624e1db615360950e074db/0cd38e643a0f465889db6fc520bb47ca.jpg, createdBy=a3065249961, createdName=147dc0c2m38(暂无昵称), createdTime=Thu Feb 24 09:30:04 CST 2022, time=2022-02-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=888542, encodeId=03c1888542a4, content=请问一下,在R语言中怎么进行设定log-binomial model呢? , beContent=null, objectType=article, channel=null, level=null, likeNumber=82, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=350a5255931, createdName=147f0408m36(暂无昵称), createdTime=Sat Sep 26 14:53:55 CST 2020, time=2020-09-26, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1746735, encodeId=48371e46735f2, content=<a href='/topic/show?id=88e91099e10' target=_blank style='color:#2F92EE;'>#logistic回归#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=60, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=10997, encryptionId=88e91099e10, topicName=logistic回归)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=d3c135838005, createdName=xlwang2703, createdTime=Thu Aug 11 17:08:00 CST 2016, time=2016-08-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1905764, encodeId=bc661905e6484, content=<a href='/topic/show?id=9dc4109964f' target=_blank style='color:#2F92EE;'>#Logistic#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=60, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=10996, encryptionId=9dc4109964f, topicName=Logistic)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=afa4194, createdName=cenghis, createdTime=Fri May 12 02:08:00 CST 2017, time=2017-05-12, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1455121, encodeId=e7371455121ca, content=<a href='/topic/show?id=bebe8032fc' target=_blank style='color:#2F92EE;'>#GIST#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=45, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=8032, encryptionId=bebe8032fc, topicName=GIST)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=6e445632366, createdName=july_977, createdTime=Sun Jun 19 02:08:00 CST 2016, time=2016-06-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=90422, encodeId=a4899042205, content=好文章,值得学习, beContent=null, objectType=article, channel=null, level=null, likeNumber=173, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=53751677671, createdName=沉心多思, createdTime=Sat Jun 18 18:16:00 CST 2016, time=2016-06-18, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=90241, encodeId=c4f99024186, content=有些看不懂, beContent=null, objectType=article, channel=null, level=null, likeNumber=147, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20200609/ef6a57dbe7f1489dad7446b7c5217858/d5e4fe65996c4446a029b0f5d056abb1.jpg, createdBy=6b011518214, createdName=午夜星河, createdTime=Fri Jun 17 21:30:00 CST 2016, time=2016-06-17, status=1, ipAttribution=)]
    2016-06-18 沉心多思

    好文章,值得学习

    0

  8. [GetPortalCommentsPageByObjectIdResponse(id=1196709, encodeId=55971196e0992, content=第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?自变量往往有多个分类,是自变量的某一类比其他类发生率高得多,还是每一类都比较高?, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220517/aac2a6027a624e1db615360950e074db/0cd38e643a0f465889db6fc520bb47ca.jpg, createdBy=a3065249961, createdName=147dc0c2m38(暂无昵称), createdTime=Thu Feb 24 09:32:02 CST 2022, time=2022-02-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1196706, encodeId=cca31196e06f0, content=第一句说结局发生率较大时使用Log-binomial ,第三句又说发生率罕见时建议使用Log-binomial 。到底什么时候用?另外,什么叫发生率较高?是总体率吗?因变量往往有多个分类,是因变量的某一类比其他类发生率高得多,还是每一类都比较高?, beContent=null, objectType=article, channel=null, level=null, likeNumber=64, replyNumber=1, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220517/aac2a6027a624e1db615360950e074db/0cd38e643a0f465889db6fc520bb47ca.jpg, createdBy=a3065249961, createdName=147dc0c2m38(暂无昵称), createdTime=Thu Feb 24 09:30:04 CST 2022, time=2022-02-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=888542, encodeId=03c1888542a4, content=请问一下,在R语言中怎么进行设定log-binomial model呢? , beContent=null, objectType=article, channel=null, level=null, likeNumber=82, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=350a5255931, createdName=147f0408m36(暂无昵称), createdTime=Sat Sep 26 14:53:55 CST 2020, time=2020-09-26, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1746735, encodeId=48371e46735f2, content=<a href='/topic/show?id=88e91099e10' target=_blank style='color:#2F92EE;'>#logistic回归#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=60, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=10997, encryptionId=88e91099e10, topicName=logistic回归)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=d3c135838005, createdName=xlwang2703, createdTime=Thu Aug 11 17:08:00 CST 2016, time=2016-08-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1905764, encodeId=bc661905e6484, content=<a href='/topic/show?id=9dc4109964f' target=_blank style='color:#2F92EE;'>#Logistic#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=60, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=10996, encryptionId=9dc4109964f, topicName=Logistic)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=afa4194, createdName=cenghis, createdTime=Fri May 12 02:08:00 CST 2017, time=2017-05-12, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1455121, encodeId=e7371455121ca, content=<a href='/topic/show?id=bebe8032fc' target=_blank style='color:#2F92EE;'>#GIST#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=45, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=8032, encryptionId=bebe8032fc, topicName=GIST)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=6e445632366, createdName=july_977, createdTime=Sun Jun 19 02:08:00 CST 2016, time=2016-06-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=90422, encodeId=a4899042205, content=好文章,值得学习, beContent=null, objectType=article, channel=null, level=null, likeNumber=173, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=53751677671, createdName=沉心多思, createdTime=Sat Jun 18 18:16:00 CST 2016, time=2016-06-18, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=90241, encodeId=c4f99024186, content=有些看不懂, beContent=null, objectType=article, channel=null, level=null, likeNumber=147, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20200609/ef6a57dbe7f1489dad7446b7c5217858/d5e4fe65996c4446a029b0f5d056abb1.jpg, createdBy=6b011518214, createdName=午夜星河, createdTime=Fri Jun 17 21:30:00 CST 2016, time=2016-06-17, status=1, ipAttribution=)]
    2016-06-17 午夜星河

    有些看不懂

    0

相关资讯

七种常见的回归分析技术,助力建模和数据分析

回归分析是建模和分析数据的重要工具。本文解释了回归分析的内涵及其优势,重点总结了应该掌握的线性回归、逻辑回归、多项式回归、逐步回归、岭回归、套索回归、ElasticNet回归等七种最常用的回归技术及其关键要素,最后介绍了选择正确的回归模型的关键因素。 什么是回归分析? 回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模

回归分析中,多重共线性的处理策略方法

在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,也就是说,解释变量X1,X2,……,Xk中的任何一个都不能是其他解释变量的线性组合。如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。多重共线性违背了解释变量间不相关的古典假设,将给普通最小二乘法带来严重后果。 造成多重共线性的原因: 1、解

学霸笔记:Logistic回归分析

Logistic回归:实际上属于判别分析,因拥有很差的判别效率而不常用。现在用得最多的是临床研究中的观察性研究。1. 应用范围: ① 适用于流行病学资料的危险因素分析 ② 实验室中药物的剂量-反应关系 ③ 观察性研究结果中混杂控制 ④ 疾病的预后因素分析 2. Logistic回归的分类: ① 按因变量的资料类型

Logistic回归如何校正的RR,而不是OR?

流行病学研究中,有两个非常重要的,衡量暴露与结局的关联指标:OR和RR。OR(Odds Ratio)中文里通常译为比值比,优势比。Odds是一个源于赌博的概念,比如猜色子大小,硬币正反面时 大 v.s.小 , 正 v.s.反 的概率的比值叫Odds, 两个odds之间再取比值叫Odds Ratio。 针对Odds Ratio具体而言,又分暴露比值比,患病比值比,发病比值比。RR(Rate Rat

SPSS 17.0中如何安装偏最小二乘回归(PLS)模块

不过,在SPSS 22.0中已默认安装了,不必再次安装了。在数据处理中需要在SPSS中用到偏最小二乘回归(Partial Least Squares Regression,PLS)功能,要安装PLS插件,在各个论坛上查找了很多资料,但是发现介绍的都不够具体,导致在装过以后运行的过程中出错。同时,相关软件报错,不能正确安装。同时SPSS被IBM收购,也给同学们带来不好麻烦。 其中偏最小二乘

Logistic回归、决策树和支持向量机介绍

分类问题是我们在各个行业的商业业务中遇到的主要问题之一。在本文中,我们将从众多技术中挑选出三种主要技术展开讨论,逻辑回归(Logistic Regression)、决策树(Decision Trees)和支持向量机(Support Vector Machine,SVM)。 上面列出的算法都是用来解决分类问题(SVM和DT也被用于回归,但这不在我们的讨论范围

Baidu
map
Baidu
map
Baidu
map