Baidu
map

多元回归分析中的共线性问题

2016-12-08 微天使 多元回归分析中的共线性问题

多元回归分析中的共线性问题

多重共线性指自变量问存在线性相关关系,即一个自变量可以用其他一个或几个自变量的线性表达式进行表示。若存在多重共线性,计算自变量的偏回归系数β时,矩阵不可逆,导致β存在无穷多个解或无解。而在使用多元线性回归构建模型过程中,变量之间存在多重共线性问题也是比较常见的。那么当发现多重线性回归模型中存在多重共线性时我们该如何处理呢?可通过以下方法予以解决:(1)逐步回归使用逐步回归可以在一定程度上筛选存在多重共线性的自变量组合中对反应变量变异解释较大的变量,而将解释较小的变量排除在模型之外。但这种方法缺点是当共线性较为严重时,变量自动筛选的方法并不能完全解决问题。(2) 岭回归岭回归为有偏估计,但能有效地控制回归系数的标准误大小。(3) 主成分回归可以使用主成分分析的方法对存在多重共线性的自变量组合提取主成分,然后以特征值较大的(如大于1)几个主成分与其他自变量一起进行多重线性回归。得出的主成分回归系数再根据主成分表达式反推出原始自变量的参数估计。该方法在提取主成分时丢失了一部分信息,几个自变量间的多重共线性越强,提取主成分时丢失的信息越少。(4) 路径分析如果对自变量间的联系规律有比较清楚的了

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (5)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=1946397, encodeId=c9c4194639e54, content=<a href='/topic/show?id=184f30033b6' target=_blank style='color:#2F92EE;'>#共线性#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=30033, encryptionId=184f30033b6, topicName=共线性)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=9cb02500048, createdName=ms6832696159214430, createdTime=Sat Aug 26 07:08:00 CST 2017, time=2017-08-26, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1671695, encodeId=d61c16e169525, content=<a href='/topic/show?id=c56c4051902' target=_blank style='color:#2F92EE;'>#回归分析#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=83, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=40519, encryptionId=c56c4051902, topicName=回归分析)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=a46f26833520, createdName=cenghis, createdTime=Thu Apr 20 07:08:00 CST 2017, time=2017-04-20, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=161353, encodeId=c088161353f5, content=谢谢了,学习了, beContent=null, objectType=article, channel=null, level=null, likeNumber=106, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=30331616752, createdName=txqjm, createdTime=Fri Dec 09 07:08:42 CST 2016, time=2016-12-09, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=161348, encodeId=27d816134832, content=小多元回归分析中的共线性问题很难掌握,学习了。, beContent=null, objectType=article, channel=null, level=null, likeNumber=88, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=60791943465, createdName=1e0f8808m18(暂无匿称), createdTime=Fri Dec 09 06:29:55 CST 2016, time=2016-12-09, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=161289, encodeId=bd3716128953, content=受益匪浅!, beContent=null, objectType=article, channel=null, level=null, likeNumber=89, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://cdnapi.center.medsci.cn/medsci/head/2017/10/03/a3f077b5bdb6b80e6c9ec9f57748d33c.jpg, createdBy=a7e7110476, createdName=xinghai, createdTime=Thu Dec 08 21:53:13 CST 2016, time=2016-12-08, status=1, ipAttribution=)]
  2. [GetPortalCommentsPageByObjectIdResponse(id=1946397, encodeId=c9c4194639e54, content=<a href='/topic/show?id=184f30033b6' target=_blank style='color:#2F92EE;'>#共线性#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=30033, encryptionId=184f30033b6, topicName=共线性)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=9cb02500048, createdName=ms6832696159214430, createdTime=Sat Aug 26 07:08:00 CST 2017, time=2017-08-26, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1671695, encodeId=d61c16e169525, content=<a href='/topic/show?id=c56c4051902' target=_blank style='color:#2F92EE;'>#回归分析#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=83, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=40519, encryptionId=c56c4051902, topicName=回归分析)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=a46f26833520, createdName=cenghis, createdTime=Thu Apr 20 07:08:00 CST 2017, time=2017-04-20, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=161353, encodeId=c088161353f5, content=谢谢了,学习了, beContent=null, objectType=article, channel=null, level=null, likeNumber=106, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=30331616752, createdName=txqjm, createdTime=Fri Dec 09 07:08:42 CST 2016, time=2016-12-09, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=161348, encodeId=27d816134832, content=小多元回归分析中的共线性问题很难掌握,学习了。, beContent=null, objectType=article, channel=null, level=null, likeNumber=88, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=60791943465, createdName=1e0f8808m18(暂无匿称), createdTime=Fri Dec 09 06:29:55 CST 2016, time=2016-12-09, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=161289, encodeId=bd3716128953, content=受益匪浅!, beContent=null, objectType=article, channel=null, level=null, likeNumber=89, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://cdnapi.center.medsci.cn/medsci/head/2017/10/03/a3f077b5bdb6b80e6c9ec9f57748d33c.jpg, createdBy=a7e7110476, createdName=xinghai, createdTime=Thu Dec 08 21:53:13 CST 2016, time=2016-12-08, status=1, ipAttribution=)]
  3. [GetPortalCommentsPageByObjectIdResponse(id=1946397, encodeId=c9c4194639e54, content=<a href='/topic/show?id=184f30033b6' target=_blank style='color:#2F92EE;'>#共线性#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=30033, encryptionId=184f30033b6, topicName=共线性)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=9cb02500048, createdName=ms6832696159214430, createdTime=Sat Aug 26 07:08:00 CST 2017, time=2017-08-26, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1671695, encodeId=d61c16e169525, content=<a href='/topic/show?id=c56c4051902' target=_blank style='color:#2F92EE;'>#回归分析#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=83, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=40519, encryptionId=c56c4051902, topicName=回归分析)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=a46f26833520, createdName=cenghis, createdTime=Thu Apr 20 07:08:00 CST 2017, time=2017-04-20, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=161353, encodeId=c088161353f5, content=谢谢了,学习了, beContent=null, objectType=article, channel=null, level=null, likeNumber=106, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=30331616752, createdName=txqjm, createdTime=Fri Dec 09 07:08:42 CST 2016, time=2016-12-09, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=161348, encodeId=27d816134832, content=小多元回归分析中的共线性问题很难掌握,学习了。, beContent=null, objectType=article, channel=null, level=null, likeNumber=88, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=60791943465, createdName=1e0f8808m18(暂无匿称), createdTime=Fri Dec 09 06:29:55 CST 2016, time=2016-12-09, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=161289, encodeId=bd3716128953, content=受益匪浅!, beContent=null, objectType=article, channel=null, level=null, likeNumber=89, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://cdnapi.center.medsci.cn/medsci/head/2017/10/03/a3f077b5bdb6b80e6c9ec9f57748d33c.jpg, createdBy=a7e7110476, createdName=xinghai, createdTime=Thu Dec 08 21:53:13 CST 2016, time=2016-12-08, status=1, ipAttribution=)]
    2016-12-09 txqjm

    谢谢了,学习了

    0

  4. [GetPortalCommentsPageByObjectIdResponse(id=1946397, encodeId=c9c4194639e54, content=<a href='/topic/show?id=184f30033b6' target=_blank style='color:#2F92EE;'>#共线性#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=30033, encryptionId=184f30033b6, topicName=共线性)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=9cb02500048, createdName=ms6832696159214430, createdTime=Sat Aug 26 07:08:00 CST 2017, time=2017-08-26, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1671695, encodeId=d61c16e169525, content=<a href='/topic/show?id=c56c4051902' target=_blank style='color:#2F92EE;'>#回归分析#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=83, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=40519, encryptionId=c56c4051902, topicName=回归分析)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=a46f26833520, createdName=cenghis, createdTime=Thu Apr 20 07:08:00 CST 2017, time=2017-04-20, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=161353, encodeId=c088161353f5, content=谢谢了,学习了, beContent=null, objectType=article, channel=null, level=null, likeNumber=106, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=30331616752, createdName=txqjm, createdTime=Fri Dec 09 07:08:42 CST 2016, time=2016-12-09, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=161348, encodeId=27d816134832, content=小多元回归分析中的共线性问题很难掌握,学习了。, beContent=null, objectType=article, channel=null, level=null, likeNumber=88, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=60791943465, createdName=1e0f8808m18(暂无匿称), createdTime=Fri Dec 09 06:29:55 CST 2016, time=2016-12-09, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=161289, encodeId=bd3716128953, content=受益匪浅!, beContent=null, objectType=article, channel=null, level=null, likeNumber=89, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://cdnapi.center.medsci.cn/medsci/head/2017/10/03/a3f077b5bdb6b80e6c9ec9f57748d33c.jpg, createdBy=a7e7110476, createdName=xinghai, createdTime=Thu Dec 08 21:53:13 CST 2016, time=2016-12-08, status=1, ipAttribution=)]
    2016-12-09 1e0f8808m18(暂无匿称)

    小多元回归分析中的共线性问题很难掌握,学习了。

    0

  5. [GetPortalCommentsPageByObjectIdResponse(id=1946397, encodeId=c9c4194639e54, content=<a href='/topic/show?id=184f30033b6' target=_blank style='color:#2F92EE;'>#共线性#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=30033, encryptionId=184f30033b6, topicName=共线性)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=9cb02500048, createdName=ms6832696159214430, createdTime=Sat Aug 26 07:08:00 CST 2017, time=2017-08-26, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1671695, encodeId=d61c16e169525, content=<a href='/topic/show?id=c56c4051902' target=_blank style='color:#2F92EE;'>#回归分析#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=83, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=40519, encryptionId=c56c4051902, topicName=回归分析)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=a46f26833520, createdName=cenghis, createdTime=Thu Apr 20 07:08:00 CST 2017, time=2017-04-20, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=161353, encodeId=c088161353f5, content=谢谢了,学习了, beContent=null, objectType=article, channel=null, level=null, likeNumber=106, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=30331616752, createdName=txqjm, createdTime=Fri Dec 09 07:08:42 CST 2016, time=2016-12-09, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=161348, encodeId=27d816134832, content=小多元回归分析中的共线性问题很难掌握,学习了。, beContent=null, objectType=article, channel=null, level=null, likeNumber=88, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=60791943465, createdName=1e0f8808m18(暂无匿称), createdTime=Fri Dec 09 06:29:55 CST 2016, time=2016-12-09, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=161289, encodeId=bd3716128953, content=受益匪浅!, beContent=null, objectType=article, channel=null, level=null, likeNumber=89, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://cdnapi.center.medsci.cn/medsci/head/2017/10/03/a3f077b5bdb6b80e6c9ec9f57748d33c.jpg, createdBy=a7e7110476, createdName=xinghai, createdTime=Thu Dec 08 21:53:13 CST 2016, time=2016-12-08, status=1, ipAttribution=)]
    2016-12-08 xinghai

    受益匪浅!

    0

相关资讯

梅斯小编就带你看一下

温暖美好的医生故事~

相关回归分析原理及应用

相关回归分析原理及应用

(一)基因编辑

转瞬间,2016年又即将逝去,即将过去的这一年,

测试微信采集

测试微信采集

就带你看一下

温暖美好的医生故事

水果是饭前吃还是饭后吃,你弄明白了吗?

其实呀,吃水果还真有一张时间表

Baidu
map
Baidu
map
Baidu
map