Baidu
map

麻省理工学院借助机器学习改进患者护理条件

2017-08-27 佚名 亿欧

麻省理工学院的计算机科学和人工智能实验室采用包括电子健康数据记录等多种类型的医疗数据以预测医疗情况。两个团队分别创建了“ICU干预”和“EHR模型迁移”机器学习方法,致力于改进患者护理条件。

麻省理工学院的计算机科学和人工智能实验室采用包括电子健康数据记录等多种类型的医疗数据以预测医疗情况。两个团队分别创建了“ICU干预”和“EHR模型迁移”机器学习方法,致力于改进患者护理条件。

医生经常因需要察看各种图表、测验结果和其他指标所困扰。想要在整合与监测多个患者数据的同时做出实时治疗决策是十分困难的,特别是当医院之间数据记录不一致时,其所造成的挑战就更大了。

麻省理工学院的计算机科学和人工智能实验室(CSAIL)的研究人员在一则新的文章中探讨了怎样能利用电脑帮助医生做出更好医疗决策。

其中,一个团队创建了一种名为“重症监护室干预(ICU Intervene)”的机器学习方法,该方法需要大量的重症监护室(ICU)数据,所需数据包括人的生命特征、实验室数据、说明笔记、人口统计数据,以确定不同症状需要何种治疗方法。该系统使用“深度学习”技术进行实时预测,从过去的ICU案例中学习,从而为重症监护提出建议,同时解释做出这些决策的原因。

有关ICU干预文章的主要作者Harini Suresh博士说:“该系统可能有助于在ICU中时刻待命的医生,因为这是一个有着高压力、高需求的环境。其目标是利用医疗记录中的数据来改善医疗条件并对可能出现的干预情况做出预测。”

另一个团队则开发出了“EHR模型迁移”的方法,其对于处理来自不同EHR系统的数据能够进行系统训练,可以用于帮助应用预测模型于电子健康记录(EHR)系统。具体来说,使用该研究团队的这种方法,可以实现在一个EHR系统上训练得出死亡率数据和延长停留时间的预测模型,并将得出的模型迁移在另一个EHR系统中进行预测。

ICU干预由Suresh博士、Nathan Hunt、Alistair Johnson博士后、Leo Anthony Celi研究员、麻省理工学院教授Peter Szolovits和博士生Marzyeh Ghassemi共同开发,并于本月在波士顿医疗机器学习会议上首次提出。

EHR模型转移由CSAIL在读博士生Jen Gong和Tristan Naumann,以及Szolovits和电气工程教授John Guttag共同研发。其在加拿大哈利法克斯的ACM知识发现和数据挖掘特别兴趣小组上首次提出。

上述两模型都使用了来自关键护理数据库MIMIC的数据进行了培训,其中的数据包括来自大约40000名重症监护病人的去标识数据,并由麻省理工学院计算生理学实验室开发。

重症监护室(ICU)干预

整合ICU数据对于预测患者健康结果过程的自动化而言至关重要。

Suresh表示:“此前,临床决策中的许多工作都关注于死亡率等结果上,而这项工作的出现则是预测可行的治疗方法。此外,该系统能够使用单一模型预测出多种结果。”

ICU干预专注于对五种关键措施以小时为单位进行预测,措施涵盖各种关键护理需求,如呼吸辅助、改善心血管功能、降低血压、输液治疗。

每小时,系统从代表生命体征的数据以及临床笔记和其他数据点中提取值。所有数据都用值表示,表示患者距平均值多远(然后评估进一步治疗)。

重要的是,ICU干预可以对未来做出预测。例如,该模型可以预测6小时后患者是否需要呼吸机,而不仅仅只能预测出患者在30分钟或1小时后需要使用呼吸机。该团队还专注于为模型的预测提供推理,为医生提供更多的见解。

斯坦福大学医学副教授奈加姆·沙阿(Nigam Shah)说,“基于神经网络的深层神经预测模型往往因其机器的身份而受到批评,然而,这些作者高度准确地预测了医疗干预的开始和结束,并且能够实际证实其做出的预测的可解释性。”

该团队发现,该系统在预测干预措施方面优于从前,并且特别擅长预测血管加压素的需要,这是一种用于收紧血管并提高血压的药物。

将来,研究人员将努力改进ICU干预,以便能够为患者提供更多个性化护理,并为决策提供更先进的预测,例如为什么一个患者有可能逐渐减少类固醇,又或是为什么另一个患者可能需要进行内镜检查。

EHR模型迁移

利用ICU数据的另一个重要考虑因素是其存储方式以及当存储方法发生变化时可能出现的情况。现有的机器学习模型需要以一致的方式编码数据,因此医院经常改变其EHR系统就可能会为数据分析和预测带来重大问题。

这就是EHR模型迁移的用武之地。该方法适用于不同版本的EHR平台,使用自然语言处理来识别跨系统编码的临床信息,然后将其映射到常见的临床信息中(如“血压”和“心率”)。

例如,一个EHR平台中的病人可能正在转换医院,并需要将其数据传输到不同类型的平台。EHR模型迁移旨在确保该模型能够保持对患者情况的预测能力,例如患者长期停留,或是出现死亡的可能性。

Shah说:“用于医疗治疗的机器学习模型往往有着系统外部效度低下、站点之间的便携性差的缺点。而这些作者却设计了一个精妙的策略,即在医学本体中使用已掌握的知识,从而在两个网站之间得出共同承认的表达,其能够帮助模型在一网站上经过训练后能在另一个网站上表现良好。能够看到这样创造性地使用编码医学知识来增强预测模型的可移植性,我很兴奋。”

利用EHR模型迁移,该团队测试了其模型对两种结果的预测能力:死亡率和长期住院需求。他们在一个EHR平台上对模型进行了训练,然后在不同的平台对其预测进行了测试。发现EHR模型迁移优于普通方法,并且与单独使用EHR特异性事件相比,EHR预测模型能够更好地进行数据迁移。

未来,EHR模型迁移小组计划对其他医院和护理机构的数据和EHR系统进行评估。

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (2)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=1583055, encodeId=151e1583055a9, content=<a href='/topic/show?id=f6e1611840d' target=_blank style='color:#2F92EE;'>#机器#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=74, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=61184, encryptionId=f6e1611840d, topicName=机器)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=13dc16973127, createdName=ms6279672939590805, createdTime=Tue Aug 29 10:39:00 CST 2017, time=2017-08-29, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=237802, encodeId=363523e802a0, content=学习了谢谢分享, beContent=null, objectType=article, channel=null, level=null, likeNumber=109, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://wx.qlogo.cn/mmopen/oLAjfB7s1ib06iaV3D9Tg5Kzuf9u71gZhPYMiajRtENwicoAABeQtfXOlic8ibhYSy6DvJZWUDVtjRvTfqBffr1XJ6JLtFB5kHicthl/0, createdBy=08bb2061153, createdName=189****7206, createdTime=Sun Aug 27 23:15:52 CST 2017, time=2017-08-27, status=1, ipAttribution=)]
  2. [GetPortalCommentsPageByObjectIdResponse(id=1583055, encodeId=151e1583055a9, content=<a href='/topic/show?id=f6e1611840d' target=_blank style='color:#2F92EE;'>#机器#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=74, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=61184, encryptionId=f6e1611840d, topicName=机器)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=13dc16973127, createdName=ms6279672939590805, createdTime=Tue Aug 29 10:39:00 CST 2017, time=2017-08-29, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=237802, encodeId=363523e802a0, content=学习了谢谢分享, beContent=null, objectType=article, channel=null, level=null, likeNumber=109, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://wx.qlogo.cn/mmopen/oLAjfB7s1ib06iaV3D9Tg5Kzuf9u71gZhPYMiajRtENwicoAABeQtfXOlic8ibhYSy6DvJZWUDVtjRvTfqBffr1XJ6JLtFB5kHicthl/0, createdBy=08bb2061153, createdName=189****7206, createdTime=Sun Aug 27 23:15:52 CST 2017, time=2017-08-27, status=1, ipAttribution=)]
    2017-08-27 189****7206

    学习了谢谢分享

    0

相关资讯

CIRC RES:机器vs传统心血管危险评分

机器学习(Machine Learning, ML)是一门多领域交叉学科,可能有助于评估心血管危险因素,从而预测患者的预后。近日,在国际心血管权威杂志Circulation research上发表了一篇旨在评估机器学习-随机生存林(RF)与传统的心血管危险评分相比的特点的研究。本研究纳入了动脉粥样硬化的多种族研究(MESA)中的研究对象,随访12年,评估其心血管结局。最终,本研究纳入了6814名研

Lancet子刊:机器学习为临床研究阴性结果“平反”(Look AHEAD研究)

2012年,著名的Look AHEAD(糖尿病健康行动)临床试验因为阴性结果而被提前终止,这个结果曾经令业内人士大跌眼镜。不过根据最近发表在 The Lancet Diabetes & Endocrinology(《柳叶刀糖尿病和内分泌学》)的研究成果,通过采用机器学习方法进行分析后,当年被提前终止的阴性结果Look AHEAD可以“平反”了。西奈山伊坎医学院全球卫生研究所的数据科学研究人

机器学习里的贝叶斯基本理论、模型和算法

本文转自中国人工智能学会通讯第3期,已获授权,特此感谢!  作者:清华大学计算机科学与技术系 朱军 副教授 非常感谢周老师给这个机会让我跟大家分享一下。我今天想和大家分享的是,在深度学习或者大数据环境下我们怎么去看待相对来说比较传统的一类方法——贝叶斯方法。它是在机器学习和人工智能里比较经典的方法。 类似的报告我之前在CCF ADL 讲过,包括去年暑假周老师做学术主任在广州有过

机器学习的黄金年代,早期癌症治愈率或达98%

2016年,全球新发癌症数量超过1400万人,并导致了900万人的死亡。癌症在发达国家中已成为主要死亡原因之一,美国每年逝世的5个人当中有一人是因癌症致死。根据美国抗癌协会和国际癌症协会数据,所有的癌症都是越早治疗、治疗效果越好。癌症的早期发现,可以为病理诊断和治疗赢取更多的时间,能极大提高治愈率与患者生存周期及质量。癌症的早期筛查是个万亿级别的市场。资本市场的火爆,得益于近十余年基因测序技术的迅

J ALZHEIMERS DIS:利用机器学习对认知障碍进行诊断未来能够成为可能么?

对于痴呆症的早期诊断具有重要的临床和社会意义。最近使用对话分析(CA)定性方法的研究表明,语言和沟通问题在患者和神经学家之间是非常明显的,而基于对此的观察可以用来区分认知障碍是由于神经退行性疾病(ND)还是功能性的记忆障碍(FMD)所导致的。

SCI TRANSL MED:机器学习算法实现自闭症精准预测

通过机器学习方法对脑功能连接进行模式识别,Emerson和他的同事们对6个月大的婴儿是否会在将来表现出自闭症的症状进行了精准预测,根据受试者24个月时的诊断结果表明,预测准确性高达96%。

Baidu
map
Baidu
map
Baidu
map