Neuron:关键机制可增强大脑神经元间的信号传递功能
2013-06-26 T.Shen 生物谷
近日,刊登在国际著名杂志Neuron上的一篇研究报告中,来自马克斯普朗克学会的研究者通过研究发现了一种新型的重要分子机制,其可以使得神经元变成大脑信号调节适应真正的主导者。 神经元的沟通是通过细胞间的突触接触来实现的,首先发射神经元必须处于刺激状态,其可以产生名为神经递质的化学信使,这些信号分子随后可以达到受体细胞,并且影响其激活状态,这种信号传递过程高度复杂而且高度受控,行使功能的主角就是突触
近日,刊登在国际著名杂志Neuron上的一篇研究报告中,来自马克斯普朗克学会的研究者通过研究发现了一种新型的重要分子机制,其可以使得神经元变成大脑信号调节适应真正的主导者。
神经元的沟通是通过细胞间的突触接触来实现的,首先发射神经元必须处于刺激状态,其可以产生名为神经递质的化学信使,这些信号分子随后可以达到受体细胞,并且影响其激活状态,这种信号传递过程高度复杂而且高度受控,行使功能的主角就是突触小泡,其是一种围绕在细胞膜周围的小水泡结构。
研究者Brose表示,一个突触上快速释放的小泡数量决定了其传递信息的可靠安全性;突触的适应性可以再所有的神经元中观察到,对于进行大量重要的大脑过程来说其短期的可塑性必不可少,如果没有这种可塑性,我们就不能集中声音,使用心算将不可能。
研究者Noa Lipstein说道,我们早期对培养皿中的单一神经元进行研究,结果显示,钙-钙调蛋白复合物可以激活Munc13以及使得突触小囊泡快速充满突触结构行驶功能。本文研究中我们发现完整的神经元网络中突触的可持续效力可通过钙-钙调蛋白复合物,对Munc13的激活进行依赖。
在这项研究中研究者最终阐述了一种神经元短期可塑性的重要机制,其对于大脑乃至培养中的神经元来说非常重要,未来Munc13分子或许可以作为一种影响大脑功能的新型药物靶点来帮助科学家进行新药的开发。
Dynamic Control of Synaptic Vesicle Replenishment and Short-Term Plasticity by Ca2+-Calmodulin-Munc13-1 Signaling
Summary
Short-term synaptic plasticity, the dynamic alteration of synaptic strength during high-frequency activity, is a fundamental characteristic of all synapses. At the calyx of Held, repetitive activity eventually results in short-term synaptic depression, which is in part due to the gradual exhaustion of releasable synaptic vesicles. This is counterbalanced by Ca2+-dependent vesicle replenishment, but the molecular mechanisms of this replenishment are largely unknown. We studied calyces of Held in knockin mice that express a Ca2+-Calmodulin insensitive Munc13-1W464R variant of the synaptic vesicle priming protein Munc13-1. Calyces of these mice exhibit a slower rate of synaptic vesicle replenishment, aberrant short-term depression and reduced recovery from synaptic depression after high-frequency stimulation. Our data establish Munc13-1 as a major presynaptic target of Ca2+-Calmodulin signaling and show that the Ca2+-Calmodulin-Munc13-1 complex is a pivotal component of the molecular machinery that determines short-term synaptic plasticity characteristics.
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
#Neuron#
53
#大脑神经#
79
#脑神经#
94