Baidu
map

SPSS带你玩转GLM方差分析,一学就会!​

2015-04-22 MedSci MedSci原创

方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。它是以F值为统计量的计量资料的假设检验方法。检验方法是将总方差分解成两个或多个部分方差和,推断两组或多组的总体无数是否相等。原假设H0:多个试验组的总体均数相等,即处理因素无作用。检验水准:ɑ=0.05。GL

方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。它是以F值为统计量的计量资料的假设检验方法。检验方法是将总方差分解成两个或多个部分方差和,推断两组或多组的总体无数是否相等。原假设H0:多个试验组的总体均数相等,即处理因素无作用。检验水准:ɑ=0.05。 GLM(一般线性模型)一般用于完全随机设计资料的方差分析(单因素方差分析)、随机区组设计资料的方差分析(两因素方差分析)、拉丁方设计资料的方差分析、交叉设计的方差分析、析因设计的方差分析、协方差分析和重复测量的方差分析。 SPSS方差分析模块——General Linear Model   Univariate:单变量方差分析——单结局指标(y),适用多种试验设计的分析 Multivariate:多变量方差分析——多结局指标(y1,y2…yk) Repeated:重复测量方差分析 注意单因素方差分析是1个y,1个x(三分类以上),而单变量方差分析是1个y,1个或多个x,多变量方差分析是多个y,1个或多

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (1)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=21774, encodeId=d6a921e7446, content=学习!, beContent=null, objectType=article, channel=null, level=null, likeNumber=137, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=121e1622385, createdName=chenhui888, createdTime=Thu Apr 23 14:18:00 CST 2015, time=2015-04-23, status=1, ipAttribution=)]
    2015-04-23 chenhui888

    学习!

    0

相关资讯

SPSS进行生存分析的Cox回归模型(比例风险模型)

一、生存分析基本概念 1、事件(Event) 指研究中规定的生存研究的终点,在研究开始之前就已经制定好。根据研究性质的不同,事件可以是患者的死亡、疾病的复发、仪器的故障,也可以是下岗工人的再就业等等。 2、生存时间(Survival time) 指从某一起点到事件发生所经过的时间。生存是一个广义的概念,不仅仅指医学中的存活,也可以是机器出故障前的正常运行时间,或者下岗工人再就业前的待业时间

SPSS进行重复测量的多因素方差分析

1、概述 重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。重复测量数据在科学研究中十分常见。 分析前要对重复测量数据之间是否存在相关性进行球形检验。如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,

在线课堂:Logistic回归统计系列课程

在统计学中Logistic回归占据着重要的位置,尤其是在临床研究中,Logistic回归一直备受关注。Logistic回归又称Logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率等。

SPSS进行相关分析(Pearson、Spearman、卡方检验)

一、相关分析方法的选择及指标体系 (一)两个连续变量的相关分析 1、Pearson相关系数 最常用的相关系数,又称积差相关系数,取值-1到1,绝对值越大,说明相关性越强。该系数的计算和检验为参数方法,适用条件如下: (1)两变量呈直线相关关系,如果是曲线相关可能不准确。 (2)极端值会对结果造成较大的影响 (3)两变量符合双变量联合正态分布。 2、Spearman秩相关系数 对原始

如何在SPSS软件中安装PSM模块

如何在SPSS软件中安装PSM模块

PSM步骤及SPSS软件操作

PSM步骤及SPSS软件操作

Baidu
map
Baidu
map
Baidu
map