Baidu
map
TOPOL METHOD NONL AN 润色咨询

Topological Methods in Nonlinear Analysis

出版年份:1993 年文章数:1535 投稿命中率: 开通期刊会员,数据随心看

出版周期:Quarterly 自引率:0.0% 审稿周期: 开通期刊会员,数据随心看

前往期刊查询

期刊简介

期刊简介
GetPortalImpactFactorByIdResp(projectId=1, id=0f346405, cover=https://img.medsci.cn/images/journal/cover/2021/dhu_202109271316431650.jpg, fullname=Topological Methods in Nonlinear Analysis, abbr=TOPOL METHOD NONL AN, pyear=1993, frequence=Quarterly, articleNumbers=1535, citedSelf2015=0.0, acceptanceRate=null, submissionToAcceptance=null, averageReviewTime=暂无数据, reviewFee=null, pageFee=null, publishedRatio=2023年中国人文章占该期刊总数量暂无数据 (2022年为100.00%), issn=1230-3429, greenSci=https://www.greensci.net/search?kw=1230-3429, scijournal=https://www.scijournal.org/impact-factor-of-TOPOL-METHOD-NONL-AN.shtml, medsciHotlightString=null, medsciHotlightRealtime=1.829, medsciHotlight=1.678, medsciHotlight5year=2.3252, citescore=1.0, hIndex=23, impactFactor=0.7, orgnization=Juliusz Schauder Center, orgnizationUrl=, country=Poland, countryCn=波兰, isOa=0, isOaString=否, sciScie=Science Citation Index Expanded|Current Contents - Physical, Chemical & Earth Sciences, bigclassCas=数学 4区, smallclassCas=数学 4 区, website=https://www.tmna.ncu.pl/, websiteHits=1193, guideForAuthor=https://www.tmna.ncu.pl/web/guest/for-authors, guideForAuthorHits=341, submitWebsite=https://www.tmna.ncu.pl/web/guest/submit-a-paper1, submitWebsiteHits=817, content=<p style="margin: 0px 0px 1em; padding: 0px 4px; font-family: Arial, Helvetica, Verdana, sans-serif; font-size: 11px;"><span style="font-size: 12px;">TMNA publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those which employ topological methods. Papers in topology which are of interest in nonlinear problems may also be included.</span></p><p style="margin: 0px 0px 1em; padding: 0px 4px; font-family: Arial, Helvetica, Verdana, sans-serif; font-size: 11px;"><span style="font-size: 12px;">The current impact factors are <strong>IF 2017 = 0.645</strong><strong>.</strong></span></p><p style="margin: 0px 0px 1em; padding: 0px 4px; font-family: Arial, Helvetica, Verdana, sans-serif; font-size: 11px;"><span style="font-size: 14px;"><strong>The central topics are:</strong></span></p><ul style="margin: 1em 1em 1em 2em; padding: 0px; list-style-position: outside; list-style-image: initial; font-family: Arial, Helvetica, Verdana, sans-serif; font-size: 11px;"><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px;">nonlinear ordinary and partial differential equations and systems, boundary value problems, nonlinear integral equations, equations of mathematical physics;</span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px;"><span style="line-height: 1.4;">differential inclusions, stochastic equations and systems, functional-differential equations, nonlinear analysis methods in discrete mathematics;</span></span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px;"><span style="line-height: 1.4;">elliptic, parabolic and hyperbolic equations and systems, nonlinear ordinary and partial differential operators, first-order systems,</span></span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px;"><span style="line-height: 1.4;">Hamilton-Jacobi equations; smooth and topological dynamical systems, flows, dissipativity, ergodicity, nonlinear semigroups; discrete dynamical systems, actions of topological groups with complicated nonlinear dynamics;</span></span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px;"><span style="line-height: 1.4;">calculus of variations, critical point theory, applications in the theory of differential equations; nonlinear functional and global analysis, equations on manifolds, homotopy methods;</span></span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px;"><span style="line-height: 1.4;">nonlinear operators and their properties, degree theory, set-valued mappings, topological and metric fixed and periodic point theory;</span></span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px;"><span style="line-height: 1.4;">convex analysis, game and control theory, optimization, mathematical economics;</span></span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px;"><span style="line-height: 1.4;">algebraic, computational, applied and differential topology.</span></span></li></ul><p style="margin: 0px 0px 1em; padding: 0px 4px; font-family: Arial, Helvetica, Verdana, sans-serif; font-size: 11px;"><span style="font-size: 14px;"><strong>Specific areas include the following:</strong></span></p><ul style="margin: 1em 1em 1em 2em; padding: 0px; list-style-position: outside; list-style-image: initial; font-family: Arial, Helvetica, Verdana, sans-serif; font-size: 11px;"><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px;">bifurcation theory, Hopf bifurcation, positive and nodal solutions, periodic solutions, free boundary value problems, heat and wave equations, Schrödinger and Maxwell equations;</span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px; line-height: 1.4;">global solutions, finite-time blow up, stability theory, asymptotic behaviour, attractors, invariant manifolds;</span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px; line-height: 1.4;">topological and variational methods under the presence of constraints and symmetry;</span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px; line-height: 1.4;">theory of topological complexity, abstract and applied homology theory;</span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px; line-height: 1.4;">entropy, topological pressure, Hausdorff dimension, notions of mixing;</span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px; line-height: 1.4;">symbolic dynamics with emphasis on applications in nonlinear systems;</span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px; line-height: 1.4;">vector fields, fixed-point index, measures of noncompactness, Lefschetz and Leray-Schauder theories and their generalizations, Borsuk-Ulam type results, nonlinear spectral theory;</span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px; line-height: 1.4;">min-max methods, Lusternik-Schnirelmann and Morse theories, variational problems in physics;</span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px; line-height: 1.4;">Navier-Stokes equations, fluid mechanics, liquid crystals, contact mechanics, variational and hemivariational inequalities with applications;</span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px; line-height: 1.4;">Markov operators, selections, iterated function systems, algebraic and geometric properties of function spaces, generalized functions;</span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px; line-height: 1.4;">Conley index, absolute neighbourhood retracts, Nielsen theory of fixed points, coincidences;</span></li><li style="margin: 0px; padding: 0px;"><span style="font-size: 12px; line-height: 1.4;">nonlinear Fredholm and semi-Fredholm operators.</span></li></ul>, totalCites=1075, brief=TOPOL METHOD NONL AN杂志数学行业,“<strong><a target="_blank" href="/sci/index.do?smallclass=数学" >数学</a></strong>”子行业的中等级别杂志, articleType=该刊全部是论著,可能不接收综述类等文章, medsciHeat=<span style="color: #000000;">黑</span>, medsciComment=杂志水平一般,也很冷门,关注人少,审稿周期可能也不一定快,如果文章质量不佳,或时间不紧的话,可以考虑考虑。, medsciExplanation=MedSci期刊指数是根据中国科研工作者(含医学临床,基础,生物,化学等学科)对SCI杂志的认知度,熟悉程度,以及投稿的量等众多指标综合评定而成。当然,具体的,您还可以结合“<a href='//m.capotfarm.com/sci/submit.do?id=0f346405'>投稿经验系统</a>”,进行综合判断,这更是大家的实战经验,值得分享和参考。<br> 注意,上述MedSci期刊指数采用MedSci专利技术,由计算机系统自动计算,并给出建议,存在不准确的可能,仅供您投稿选择杂志时参考。, tags=null, citeScoreList=[GetImpactFactorCiteScoreListResponse(year=2017, citescore=0.75), GetImpactFactorCiteScoreListResponse(year=2018, citescore=0.97), GetImpactFactorCiteScoreListResponse(year=2019, citescore=1.2), GetImpactFactorCiteScoreListResponse(year=2020, citescore=1.3), GetImpactFactorCiteScoreListResponse(year=2023, citescore=1.0)], medsciIndexList=[GetImpactFactorMedsciIndexListResponse(year=2020, medsciHotlight=2.471), GetImpactFactorMedsciIndexListResponse(year=2021, medsciHotlight=1.687), GetImpactFactorMedsciIndexListResponse(year=2022, medsciHotlight=1.672), GetImpactFactorMedsciIndexListResponse(year=2023, medsciHotlight=1.869), GetImpactFactorMedsciIndexListResponse(year=2024, medsciHotlight=1.829)], citeScoreGradeList=[GetImpactFactorCiteScoreGradeResponse(smallClass=Mathematics - Analysis , rank=58/135), GetImpactFactorCiteScoreGradeResponse(smallClass=Mathematics - Applied Mathematics , rank=247/460)], totalJcrAreaList=[GetImpactFactorCiteScoreGradeResponse(smallClass=MATHEMATICS, rank=Q1)], pmcUrl=https://www.ncbi.nlm.nih.gov/nlmcatalog?term=1230-3429[ISSN], pubmedUrl=https://www.ncbi.nlm.nih.gov/pubmed?cmd=search&term=TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS[ta], article_number=43, article_number_cn=12, earlyWarning=null, linkOutUrl=null, isJournalMember=false, unscrambleContent=null, dayViewCount=false, endexampletyle=暂无数据)
期刊名称
TOPOL METHOD NONL AN/Topological Methods in Nonlinear Analysis
ISSN
1230-3429
影响指数话题
预警等级
MedSci期刊指数
1.829 (MedSci实时期刊指数) | 2.3252 (5年期刊指数)
CiteScore值
1.0
h-index
23
h5-median
暂无数据
出版社/管理机构
杂志由 Juliusz Schauder Center 出版或管理
出版国家/地区
Poland 波兰
出版周期
Quarterly
出版年份
1993
是否OA
被收录情况
Science Citation Index Expanded|Current Contents - Physical, Chemical & Earth Sciences
JCR分区
MATHEMATICS Q1
中科院分区
大类:数学 4区
小类:数学 4 区
Baidu
map
Baidu
map
Baidu
map