Baidu
map

【协和医学杂志】兴奋-抑制失衡与孤独症谱系障碍:作用机制及治疗进展

2023-09-09 协和医学杂志 协和医学杂志 发表于加利福尼亚

本文就E-I失衡在ASD中的作用机制以及E-I失衡调节剂治疗ASD的相关研究进展作一综述,以期为探索ASD的有效治疗手段提供新思路。

综 述

孤独症谱系障碍(ASD)是世界上患病率增长最快的神经发育障碍,其治疗因疾病的遗传异质性而颇具挑战。研究表明,中枢神经系统的兴奋-抑制(E-I)失衡可能是ASD的重要发病机制之一,在多种ASD动物模型中进行神经环路E-I失衡调节,能够改善模型动物的孤独症样行为。相关临床试验将E-I失衡作为ASD治疗靶点,恢复特定皮质区域原有的E-I平衡状态,能够对ASD患者起到一定的治疗作用。本文就E-I失衡在ASD中的作用机制以及E-I失衡调节剂治疗ASD的相关研究进展作一综述,以期为探索ASD的有效治疗手段提供新思路。

1 ASD概述

狭义的ASD即孤独症,最早由Kanner教授于1943年作为儿童罕见病报道,经研究发现,ASD实际上是一类较普遍的终身疾病[1]。2013年美国《精神障碍诊断与统计手册(第5版)》(DSM-5)将ASD定义为儿童在其发育早期表现出以下临床症状:持续的社会交流和社会交往障碍;受限的兴趣与活动模式和重复刻板行为[2]。自最初定义以来,这种描述并无实质性改变。

目前,全球ASD的发病率呈现快速增长趋势,严重影响儿童、青少年的正常生活。美国研究表明,3~17岁儿童ASD患病率已自2009年的1.1%升高至2017年的2.5%[3]。我国2016年调查结果显示,6~12岁儿童ASD患病率约为0.7%,较既往亦有所升高[4]

目前,ASD的发病机制尚不明确,研究表明其可能具有高度遗传性,且与环境相关[3]。ASD患者中存在上百个致病突变位点,包括单基因突变或拷贝数变异(CNV),呈现出显著的遗传异质性[4]。目前ASD治疗主要以行为干预和教育干预为主,辅以精神类药物,但治疗效果有限,尚无有效治疗方式。

近年来,中枢神经系统的E-I失衡被认为是ASD的重要发病机制之一,受到广泛关注。E-I平衡是由以谷氨酸能为代表的兴奋性递质系统和以γ-氨基丁酸(GABA)能为代表的抑制性递质系统协同作用,在神经环路的构建中发挥关键作用。

2003年Rubenstein等[5]提出重要假设,认为在遗传或表观遗传调控下感觉、记忆、社会和情感等关键神经环路中E-I平衡的兴奋性增加,可能是引起孤独症样表现的发病机制。应用ASD动物模型开展的大量研究进一步证实了上述假说[6-7]

2 ASD动物模型

稳定可靠的动物模型对于深入探究ASD病理生理机制及治疗相关研究具有重要价值。目前ASD模型动物主要包括啮齿类、非人灵长类、斑马鱼等,其中以大鼠和小鼠最为常见。ASD动物模型能够模拟社交障碍、兴趣受限与重复刻板行为等行为学表现。

ASD动物模型根据构建方法不同可分为基因模型、特发性孤独症模型和环境诱导模型:

(1)基因模型:采用基因编辑技术,对动物的单基因或多基因进行编辑构建的模型,ASD患者中存在大量的致病突变位点,其中包括介导突触稳定性的Neuroligins和Neurexins基因、脆性X综合征致病基因Fmr1、Shank3和Mecp2等,通过基因敲除或过表达构建多种基因表达异常动物模型[8-11],常表现为特定的遗传综合征,除ASD样行为外还包括生长迟缓、癫痫发作等异常表现,因此在适用性方面有一定局限性。

(2)特发性孤独症模型:通过行为学实验筛选繁育的小鼠和大鼠品系,代表模型为BTBR T+ Itpr3tf/J(以下简称“BTBR”)近交系小鼠,能够高度模拟并稳定复制ASD的全部核心症状,该模型目前已得到广泛应用[12]

(3)环境诱导模型:在发育关键期暴露于生化刺激、病毒感染、紧张刺激等环境因素而诱发ASD,以经典的丙戊酸(VPA)暴露模型为代表[13-14],然而由环境因素致病的ASD患者仅占少数,此类模型可能无法完整表现ASD行为特征。

3 中枢神经系统的E-I平衡

在细胞层面,大脑皮层中单个锥体神经元的兴奋性突触和抑制性突触被精准调控,确保树突中E/I突触比例相对恒定;在皮质环路层面,兴奋性与抑制性皮质神经元比例同样被精准调控,使得单神经元和皮质脑区在发育过程中可维持E-I平衡[15-16]

当兴奋水平超过抑制水平时,神经环路活性增强,直至环路可激发的活性达到最大值,或者在增长的边界状态下抑制水平超过兴奋水平,达到平衡状态;反之,当抑制水平超过兴奋水平时,神经环路活性减弱,直至环路静默,或在边界状态下抑制减少程度高于兴奋减少程度,从而实现E-I平衡,孤立环路的相关研究证实了这一观点,通过光遗传学技术刺激一簇神经元,其活性可传递至同层其他神经元及其他分层中,调动起足够水平的抑制用于产生平衡稳态[17-18]

当出现发育异常或病理状态改变兴奋和抑制的固有稳态时,神经环路的活性水平随之变化,称为E-I失衡,其发病机制较为复杂,并非E/I比值的整体改变,而是兴奋性或抑制性神经元中不同亚类的相对活性变化[16]。造成E-I失衡的干扰因素可能影响多个神经环路的不同靶点,包括E-I突触发育、突触可塑性、中间神经元和锥体神经元的局部相互作用、下游信号通路等[19-21]

4 E-I失衡在不同ASD动物模型中的作用机制

4.1 基因模型

脆性X综合征是最常见的引起遗传性ASD和智力低下的单基因病,致病基因为Fmr1。Fmr1基因敲除小鼠模型能够增强海马区代谢性谷氨酸能受体(mGluR)依赖性长时程抑制,mGluR拮抗剂可逆转这一现象以及小鼠的孤独症样行为,提示mGluR依赖性突触可塑性可能是ASD的发病机制之一[22]

Neuroligin-3(Nlgn3)是细胞黏附分子之一,在突触间黏附和突触分化过程中发挥重要作用。Nlgn3 R451C置换突变小鼠表现为社交活动减弱和空间学习能力增强,其躯体感觉皮质区的自发抑制性突触后电流(sIPSCs)频率较野生型增加,而兴奋性突触无显著变化[23];R451C突变小鼠和Nlgn3敲除小鼠的海马GABA能神经元均记录到内源性大麻素信号受损[24];不同Nlgn3突变体可能存在相同的纹状体选择性突触损伤,对D1多巴胺受体的GABA能抑制减少,导致重复行为增加[25],且Nlgn3敲除小鼠表现出和综合征型ASD相似的mGluR依赖性突触可塑性改变,且发育后期再表达Nlgn3可挽救此表型[26]

编码兴奋性突触后骨架蛋白的Shank3基因是目前的研究热点。Shank3B敲除小鼠AMPA受体介导的微小兴奋性突触后电流(mEPSCs)频率在皮质纹状体环路神经元中显著减少,而在海马CA1区无显著改变[10]

Shank3外显子4-9敲除小鼠的mEPSCs频率和幅度均与野生型无差异,但兴奋性突触受体NMDA/AMPA比值显著下降,提示NMDA受体功能受损[27]

此外,在Shank3杂合缺失小鼠的前额叶皮质(PFC)观察到NMDA受体介导的mEPSCs频率下降,而AMPA相关兴奋性几乎无变化[28],表明Shank3突变通过影响AMPA或NMDA受体功能使得特定环路的兴奋性下降,引起社交障碍和重复行为增多等孤独症样表现。Shank3突变可对海马CA1区的突触传递和可塑性造成一定影响[29-32],但小鼠的异常行为表现与ASD核心表现并不完全一致。

4.2 特发性孤独症模型

以BTBR小鼠为代表模型,Han等[33]首次发现BTBR小鼠海马CA1区GABA能介导的sIPSCs频率较野生型B6小鼠降低,微小抑制性突触后电流(mIPSCs)频率和幅度不变,而EPSCs频率相应增强,提示突触前抑制被削弱、E/I比值增加;应用小剂量氯硝西泮(正别构GABA受体激动剂)可逆转sIPSCs频率降低并改善BTBR小鼠的社交表现,B6小鼠的表型则不受这一干预的影响。

Cellot等[34]在新生BTBR小鼠海马CA3区发现sIPSCs的频率和幅度均增强,AMPA介导的EPSCs频率与B6小鼠无差异;而在CA1区观察到sIPSCs频率降低,与上述研究结论一致。

BTBR小鼠的内侧PFC则同时存在EPSCs频率增强和sIPSCs频率减弱,将BTBR小鼠反复暴露于具有激活GABA-A受体和抑制NMDA受体作用的七氟醚中,可使sIPSCs频率降低,暴露后小鼠的重复刻板行为也明显减少[35]

综上,BTBR小鼠模型中不同脑区的E-I失衡存在差异,且E/I比值改变方向不统一,但这些改变以及小鼠行为学表型可能均与GABA能突触传递密切相关。

4.3 环境诱导模型

在ASD的环境诱导模型中观察E-I平衡变化的研究相对较少。Banerjee 等[36]对孕鼠进行腹腔注射VPA诱导子代ASD大鼠模型,记录到其颞叶皮质的mIPSCs频率较野生型显著降低,且电诱发IPSCs(eIPSCs)频率在一定程度上被削弱;应用多种突触传递调节剂处理脑片后再次记录,发现上述E-I失衡来源于GABA能突触传递在突触前和突触后均受损,但该研究缺乏相应的行为学证据。

Kang等[37]对VPA模型小鼠腹腔注射美金刚(具有中度亲和力的非竞争性NMDA受体拮抗剂),发现小鼠的社交缺陷和重复刻板行为均得到改善,但其NMDA受体功能是否增强仍颇具争议[38-40]

5 E-I失衡调节剂治疗ASD的相关临床研究

相关随机对照试验(RCT)表明,应用E-I失衡调节剂恢复特定皮质区域原有的E-I平衡状态,能够对ASD患者起到一定的治疗作用。

Chez等[41]对ASD患者开放标签应用美金刚作为辅助治疗,治疗4~8周后患者的语言能力和社会行为均有显著改善,经21个月的长期治疗未出现严重不良反应。

Ghaleiha等[42]验证了美金刚作为利培酮治疗的辅助用药安全有效,ASD患儿异常行为量表(ABC)中的易激惹性指标及刻板行为均有所缓解。

2017年的一项双盲、安慰剂对照RCT纳入了121例ASD患儿,接受为期12周的美金刚缓释制剂或安慰剂单药治疗,尽管安全性良好,但以社会反应量表(SRS)作为疗效指标并未观察到组间差异,基本排除了美金刚作为ASD的候选治疗药物[43]。N-乙酰半胱氨酸(NAC)作为临床常用的粘液溶解剂,因其具有谷氨酸能和多巴胺能调节剂的作用,被认为可能用于治疗精神类疾病。

Hardan等[44]证实NAC口服单药治疗ASD患儿安全可耐受,显著改善了ABC易激惹性指标。随后的2项RCT研究分别以固定剂量和按体质量计算剂量的NAC单药治疗ASD,但关键行为学指标均未改善[45-46]

Berry-Kravis等[47]在阿巴氯芬(GABA-B受体选择性激动剂)治疗脆性X综合征儿童和成人患者的RCT中观察到社交回避行为显著改善,随后纳入32例非综合征型ASD儿童和青少年进行为期8周的试验,证明阿巴氯芬整体耐受性良好,并且以ABC易激惹性指标为主的多项量表结果得到改善[48]

Ⅱ期临床试验对150例ASD患者进行阿巴氯芬或安慰剂治疗12周后,虽然ABC量表中的主要结局指标无显著差异,但临床总体严重性印象量表(CGI-S)显示出阿巴氯芬的积极治疗作用[49]。目前仍有2项阿巴氯芬治疗ASD的多中心注册RCT正在开展[50]

6 小结与展望

E-I失衡是ASD的重要发病机制之一,近20年来诸多研究利用多种ASD动物模型探索了海马、PFC、颞叶等皮质环路中突触传递的变化规律,发现E-I失衡可能发生在不同脑区、不同神经元、甚至由不同受体所介导,整体E/I比值改变并不统一,体现了E-I失衡的多维度性及ASD病因的复杂性。

相关临床试验评估了E-I失衡调节剂治疗ASD患者的潜力,发现其作为辅助用药的有效性和安全性良好,但单药治疗时疗效并不显著,现有的RCT研究结果表明仅阿巴氯芬可能成为ASD的一线治疗药物。

目前,将ASD模型动物的行为表型定位到特定的环路或信号通路仍存在困难,且人类ASD的临床表现复杂多样,尚缺乏客观定量评估每种症状严重程度的手段和直接检测E-I失衡的生物标志物,动物实验得到的积极结果很难在ASD患者中进行验证。后续研究应重点关注ASD患者E-I失衡标志物检测方面的研究,并根据E-I失衡机制选择相应调节剂开展疗效研究,从而实现病理学改变和临床疗效的协同监测。

参考文献

[1]Lord C, Elsabbagh M, Baird G, et al. Autism spectrum disorder[J]. Lancet, 2018, 392: 508-520.

[2]American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5[M]. Washington, DC: American Psychiatric Association Publishing, 2013.

[3]Zablotsky B, Black LI, Maenner MJ, et al. Prevalence and Trends of Developmental Disabilities among Children in the United States: 2009—2017[J]. Pediatrics, 2019, 144: e20190811.

[4]Zhou H, Xu X, Yan W, et al. Prevalence of Autism Spectrum Disorder in China: A Nationwide Multi-center Population-based Study Among Children Aged 6 to 12 Years[J]. Neurosci Bull, 2020, 36: 961-971.

[5]Rubenstein JL, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems[J]. Genes Brain Behav, 2003, 2: 255-267.

[6]Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics[J]. World J Biol Psychiatry, 2016, 17: 174-186.

[7]Lee E, Lee J, Kim E. Excitation/Inhibition Imbalance in Animal Models of Autism Spectrum Disorders[J]. Biol Psychiatry, 2017, 81: 838-847.

[8]Radyushkin K, Hammerschmidt K, Boretius S, et al. Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit[J]. Genes Brain Behav, 2009, 8: 416-425.

[9]Esclassan F, Francois J, Phillips KG, et al. Phenotypic characterization of nonsocial behavioral impairment in neurexin 1α knockout rats[J]. Behav Neurosci, 2015, 129: 74-85.

[10]Peca J, Feliciano C, Ting JT, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction[J]. Nature, 2011, 472: 437-442.

[11]Guy J, Hendrich B, Holmes M, et al. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome[J]. Nat Genet, 2001, 27: 322-326.

[12]Mcfarlane HG, Kusek GK, Yang M, et al. Autism-like behavioral phenotypes in BTBR T+tf/J mice[J]. Genes Brain Behav, 2008, 7: 152-163.

[13]Bromley RL, Mawer G, Clayton-Smith J, et al. Autism spectrum disorders following in utero exposure to antiepile-ptic drugs[J]. Neurology, 2008, 71: 1923-1924.

[14]Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism[J]. Exp Neurol, 2018, 299: 217-227.

[15]Hengen KB, Lambo ME, Van Hooser SD, et al. Firing rate homeostasis in visual cortex of freely behaving rodents[J]. Neuron, 2013, 80: 335-342.

[16]Sohal VS, Rubenstein JL. Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders[J]. Mol Psychiatry, 2019, 24: 1248-1257.

[17]Yizhar O, Fenno LE, Prigge M, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction[J]. Nature, 2011, 477: 171-178.

[18]Adesnik H, Scanziani M. Lateral competition for cortical space by layer-specific horizontal circuits[J]. Nature, 2010, 464: 1155-1160.

[19]Lee AT, Gee SM, Vogt D, et al. Pyramidal neurons in prefrontal cortex receive subtype-specific forms of excitation and inhibition[J]. Neuron, 2014, 81: 61-68.

[20]Pfeffer CK, Xue M, He M, et al. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons[J]. Nat Neurosci, 2013, 16: 1068-1076.

[21]Pi HJ, Hangya B, Kvitsiani D, et al. Cortical interneurons that specialize in disinhibitory control[J]. Nature, 2013, 503: 521-524.

[22]Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome[J]. Nat Rev Neurosci, 2015, 16: 595-605.

[23]Tabuchi K, Blundell J, Etherton MR, et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice[J]. Science, 2007, 318: 71-76.

[24]Fldy C, Malenka RC, Südhof TC. Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling[J]. Neuron, 2013, 78: 498-509.

[25]Rothwell PE, Fuccillo MV, Maxeiner S, et al. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors[J]. Cell, 2014, 158: 198-212.

[26]Baudouin SJ, Gaudias J, Gerharz S, et al. Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism[J]. Science, 2012, 338: 128-132.

[27]Jaramillo TC, Speed HE, Xuan Z, et al. Altered Striatal Synaptic Function and Abnormal Behaviour in Shank3 Exon4-9 Deletion Mouse Model of Autism[J]. Autism Res, 2016, 9: 350-375.

[28]Duffney LJ, Zhong P, Wei J, et al. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators[J]. Cell Rep, 2015, 11: 1400-1413.

[29]Han K, Holder JL Jr, Schaaf CP, et al. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties[J]. Nature, 2013, 503: 72-77.

[30]Kouser M, Speed HE, Dewey CM, et al. Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission[J]. J Neurosci, 2013, 33: 18448-18468.

[31]Speed HE, Kouser M, Xuan Z, et al. Autism-Associated Insertion Mutation (InsG) of Shank3 Exon 21 Causes Impaired Synaptic Transmission and Behavioral Deficits[J]. J Neurosci, 2015, 35: 9648-9665.

[32]Lee J, Chung C, Ha S, et al. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit[J]. Front Cell Neurosci, 2015, 9: 94.

[33]Han S, Tai C, Jones CJ, et al. Enhancement of inhibitory neurotransmission by GABAA receptors having α2,3-subunits ameliorates behavioral deficits in a mouse model of autism[J]. Neuron, 2014, 81: 1282-1289.

[34]Cellot G, Maggi L, Di Castro MA, et al. Premature changes in neuronal excitability account for hippocampal network impairment and autistic-like behavior in neonatal BTBR T+tf/J mice[J]. Sci Rep, 2016, 6: 31696.

[35]Cui J, Park J, Ju X, et al. General Anesthesia During Neurodevelopment Reduces Autistic Behavior in Adult BTBR Mice, a Murine Model of Autism[J]. Front Cell Neurosci, 2021, 15: 772047.

[36]Banerjee A, García-Oscos F, Roychowdhury S, et al. Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism[J]. Int J Neuropsychopharmacol, 2013, 16: 1309-1318.

[37]Kang J, Kim E. Suppression of NMDA receptor function in mice prenatally exposed to valproic acid improves social deficits and repetitive behaviors[J]. Front Mol Neurosci, 2015, 8: 17.

[38]Rinaldi T, Kulangara K, Antoniello K, et al. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid[J]. Proc Natl Acad Sci U S A, 2007, 104: 13501-13506.

[39]Walcott EC, Higgins EA, Desai NS. Synaptic and intrinsic balancing during postnatal development in rat pups exposed to valproic acid in utero[J]. J Neurosci, 2011, 31: 13097-13109.

[40]Martin HG, Manzoni OJ. Late onset deficits in synaptic plasticity in the valproic acid rat model of autism[J]. Front Cell Neurosci, 2014, 8: 23.

[41]Chez MG, Burton Q, Dowling T, et al. Memantine as Adjunctive Therapy in Children Diagnosed With Autistic Spectrum Disorders: An Observation of Initial Clinical Response and Maintenance Tolerability[J]. J Child Neurol, 2007, 22: 574-579.

[42]Ghaleiha A, Asadabadi M, Mohammadi MR, et al. Memantine as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind, placebo-controlled trial[J]. Int J Neuropsychopharmacol, 2013, 16: 783-789.

[43]Aman MG, Findling RL, Hardan AY, et al. Safety and Efficacy of Memantine in Children with Autism: Randomized, Placebo-Controlled Study and Open-Label Extension[J]. J Child Adolesc Psychopharmacol, 2017, 27: 403-412.

[44]Hardan AY, Fung LK, Libove RA, et al. A randomized controlled pilot trial of oral N-acetylcysteine in children with autism [J]. Biol Psychiatry, 2012, 71: 956-961.

[45]Wink LK, Adams R, Wang Z, et al. A randomized placebo-controlled pilot study of N-acetylcysteine in youth with autism spectrum disorder[J]. Mol Autism, 2016, 7: 26.

[46]Dean OM, Gray KM, Villagonzalo KA, et al. A rando-mised, double blind, placebo-controlled trial of a fixed dose of N-acetyl cysteine in children with autistic disorder[J]. Aust N Z J Psychiatry, 2017, 51: 241-249.

[47]Berry-Kravis EM, Hessl D, Rathmell B, et al. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial[J]. Sci Transl Med, 2012, 4: 152ra27.

[48]Erickson CA, Veenstra-Vanderweele JM, Melmed RD, et al. STX209 (arbaclofen) for autism spectrum disorders: an 8-week open-label study[J]. J Autism Dev Disord, 2014, 44: 958-964.

[49]Veenstra-Vanderweele J, Cook EH, King BH, et al. Arbaclofen in Children and Adolescents with Autism Spectrum Disorder: A Randomized, Controlled, Phase 2 Trial[J]. Neuropsychopharmacology, 2017, 42: 1390-1398.

[50]Parellada M, San José Cáceres A, Palmer M, et al. A Phase Ⅱ Randomized, Double-Blind, Placebo-Controlled Study of the Efficacy, Safety, and Tolerability of Arbaclofen Administered for the Treatment of Social Function in Children and Adolescents With Autism Spectrum Disorders: Study Protocol for AIMS-2-TRIALS-CT1[J]. Front Psychiatry, 2021, 12: 701729.

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (0)
#插入话题

相关资讯

Biol. Psychiatry:基于孤独症谱系障碍神经影像和基因转录组数据的大脑连接异质性及其分子机制

ASD患者大脑连接的异质性是存在的,并且可以通过聚类方法进行分类。这种异质性可能更直接地反映了分子水平的异质性,并且这些分子机制可能与细胞周期的调节和DNA修复相关。

Nature:对自闭症大脑最全面的分子研究

该研究从分子水平全面地表征了孤独症谱系障(ASD),展示了迄今为止在分子水平上对自闭症如何影响大脑的最全面认知。

Toxicol Sci:研究揭示PM2.5与孤独症谱系障碍之间的联系

ASD(Autism Spectrum Disorder)孤独症谱系障碍,是一系列复杂的神经发展障碍性疾病,能影响孩子的社交,行为和交流方面的能力。有孤独症谱系障碍的人,其大脑处理信息的方式异于常人。

JAMA Pediatr:产妇硬膜外镇痛导致后代孤独症风险增加

产妇硬膜外镇痛可能与儿童孤独症谱系障碍风险增加有关

孤独症谱系障碍儿童早期识别筛查和早期干预专家共识

为提高我国儿科医师识别ASD早期行为标志的能力,规范早期筛查,由中华医学会儿科学分会发育行为学组主持,并邀请中国医师协会儿科分会儿童保健学专业委员会、国家卫生和计划生育委员会行业专项"儿童孤独症诊断与防治技术和标准研究"项目专家组以及相关专业的专家参加讨论,并参考美国、英国等有关ASD管理指南,同时结合国内外ASD研究进展,达成以下专家共识。

儿童癫痫共患孤独症谱系障碍诊断治疗的中国专家共识

国内外研究发现,早期诊断、早期干预可以有效改善癫痫共患 ASD 患儿的预后。但是目前的困难在于国内缺乏针对癫痫共患 ASD 的规范化诊疗,致使很大一部分癫痫共患 ASD 的患儿错失了最佳诊疗时机。因此,中国抗癫痫协会共患病专业委员会组织专家形成本共识,旨在提高医师、患儿及家属对癫痫共患 ASD 的诊疗意识,为临床医生规范化诊疗癫痫共患 ASD 的患儿提供依据。

Baidu
map
Baidu
map
Baidu
map