Baidu
map

Nat Commun:深度学习模型分析人类复杂疾病的准确性

2020-09-22 xiaozeng MedSci原创

既往研究显示,通过全基因组关联研究(GWAS)分析鉴定出的疾病风险变异主要位于基因组的非编码区域中。因此,全基因组图谱的深度学习模型在预测DNA序列的调控作用方面存在着巨大的潜力。然而,目前深度学习尚

既往研究显示,通过全基因组关联研究(GWAS)分析鉴定出的疾病风险变异主要位于基因组的非编码区域中。因此,全基因组图谱的深度学习模型在预测DNA序列的调控作用方面存在着巨大的潜力。然而,目前深度学习尚未能完全解析人类复杂疾病的信息。

该研究主要使用两个已有的深度学习模型:DeepSEA和Basenji,基于一系列编码、保守和监管注释,针对应用分层连锁不平衡(LD)评分回归划分的41种疾病和性状评估全基因组的SNP位点注释。研究人员通过对所有(11个血液样本和8个大脑样本)性状的荟萃分析汇总了所有组织或细胞类型的功能注释。

深度学习模型等位基因效应分析

研究人员发现这些注释高度富集于疾病的遗传学层面,与非组织特异性的等位基因效应分析相似,血液特异性和脑特异性等位基因效应的分析Basenji模型注释通常优于DeepSEA模型,能够产生更高的富集度和唯一的有条件意义的注释。


综上,该研究结果显示,深度学习模型目前仍未充分发挥其潜力,该模型可以为复杂的疾病提供可观的独特信息,然而目前还无法从预测的监管注释中推断出该信息的准确。

 

原始出处:

Dey, K.K., van de Geijn, B., Kim, S.S. et al. Evaluating the informativeness of deep learning annotations for human complex diseases. Nat Commun 11, 4703 (17 September 2020).

 

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (7)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=1905991, encodeId=5d851905991af, content=<a href='/topic/show?id=34953120e52' target=_blank style='color:#2F92EE;'>#准确性#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=48, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=31207, encryptionId=34953120e52, topicName=准确性)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=512a199, createdName=lilianxiang, createdTime=Mon Nov 23 21:51:37 CST 2020, time=2020-11-23, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=2087780, encodeId=08a0208e78064, content=<a href='/topic/show?id=490750196b' target=_blank style='color:#2F92EE;'>#COMMUN#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=43, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=5019, encryptionId=490750196b, topicName=COMMUN)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7931272, createdName=liuli5079, createdTime=Sat Feb 06 17:51:37 CST 2021, time=2021-02-06, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1884674, encodeId=58a218846e46d, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=59, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Tue Dec 08 05:51:37 CST 2020, time=2020-12-08, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1975861, encodeId=e31719e586122, content=<a href='/topic/show?id=4f9b661257b' target=_blank style='color:#2F92EE;'>#深度学习模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=72, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66125, encryptionId=4f9b661257b, topicName=深度学习模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=726030, createdName=Boyinsh, createdTime=Mon May 31 02:51:37 CST 2021, time=2021-05-31, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=887594, encodeId=2c7088e5942e, content=<a href='/topic/show?id=e4cb6612395' target=_blank style='color:#2F92EE;'>#深度学习#</a>深度学习模型目前仍未充分发挥其潜力,该模型可以为复杂的疾病提供可观的独特信息,然而目前还无法从预测的监管注释中推断出该信息的准确。, beContent=null, objectType=article, channel=null, level=null, likeNumber=196, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66123, encryptionId=e4cb6612395, topicName=深度学习)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=a12645, createdName=智智灵药, createdTime=Wed Sep 23 09:52:23 CST 2020, time=2020-09-23, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047851, encodeId=9b91104e85159, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Tue Sep 22 23:51:37 CST 2020, time=2020-09-22, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=887503, encodeId=56e088e5036c, content=<a href='/topic/show?id=e4cb6612395' target=_blank style='color:#2F92EE;'>#深度学习#</a>为基础的<a href='/topic/show?id=d3a024808e0' target=_blank style='color:#2F92EE;'>#人工智能#</a>能逐步改变人类,只是现在还缺少指导手册, beContent=null, objectType=article, channel=null, level=null, likeNumber=260, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66123, encryptionId=e4cb6612395, topicName=深度学习), TopicDto(id=24808, encryptionId=d3a024808e0, topicName=人工智能)], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220519/c2ab253484ee4527a2d4e9589a4821ac/45de9bf494a54becb2ea4369c9d11e85.jpg, createdBy=7a3710, createdName=lovetcm, createdTime=Tue Sep 22 22:00:29 CST 2020, time=2020-09-22, status=1, ipAttribution=)]
  2. [GetPortalCommentsPageByObjectIdResponse(id=1905991, encodeId=5d851905991af, content=<a href='/topic/show?id=34953120e52' target=_blank style='color:#2F92EE;'>#准确性#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=48, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=31207, encryptionId=34953120e52, topicName=准确性)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=512a199, createdName=lilianxiang, createdTime=Mon Nov 23 21:51:37 CST 2020, time=2020-11-23, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=2087780, encodeId=08a0208e78064, content=<a href='/topic/show?id=490750196b' target=_blank style='color:#2F92EE;'>#COMMUN#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=43, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=5019, encryptionId=490750196b, topicName=COMMUN)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7931272, createdName=liuli5079, createdTime=Sat Feb 06 17:51:37 CST 2021, time=2021-02-06, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1884674, encodeId=58a218846e46d, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=59, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Tue Dec 08 05:51:37 CST 2020, time=2020-12-08, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1975861, encodeId=e31719e586122, content=<a href='/topic/show?id=4f9b661257b' target=_blank style='color:#2F92EE;'>#深度学习模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=72, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66125, encryptionId=4f9b661257b, topicName=深度学习模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=726030, createdName=Boyinsh, createdTime=Mon May 31 02:51:37 CST 2021, time=2021-05-31, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=887594, encodeId=2c7088e5942e, content=<a href='/topic/show?id=e4cb6612395' target=_blank style='color:#2F92EE;'>#深度学习#</a>深度学习模型目前仍未充分发挥其潜力,该模型可以为复杂的疾病提供可观的独特信息,然而目前还无法从预测的监管注释中推断出该信息的准确。, beContent=null, objectType=article, channel=null, level=null, likeNumber=196, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66123, encryptionId=e4cb6612395, topicName=深度学习)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=a12645, createdName=智智灵药, createdTime=Wed Sep 23 09:52:23 CST 2020, time=2020-09-23, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047851, encodeId=9b91104e85159, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Tue Sep 22 23:51:37 CST 2020, time=2020-09-22, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=887503, encodeId=56e088e5036c, content=<a href='/topic/show?id=e4cb6612395' target=_blank style='color:#2F92EE;'>#深度学习#</a>为基础的<a href='/topic/show?id=d3a024808e0' target=_blank style='color:#2F92EE;'>#人工智能#</a>能逐步改变人类,只是现在还缺少指导手册, beContent=null, objectType=article, channel=null, level=null, likeNumber=260, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66123, encryptionId=e4cb6612395, topicName=深度学习), TopicDto(id=24808, encryptionId=d3a024808e0, topicName=人工智能)], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220519/c2ab253484ee4527a2d4e9589a4821ac/45de9bf494a54becb2ea4369c9d11e85.jpg, createdBy=7a3710, createdName=lovetcm, createdTime=Tue Sep 22 22:00:29 CST 2020, time=2020-09-22, status=1, ipAttribution=)]
    2021-02-06 liuli5079
  3. [GetPortalCommentsPageByObjectIdResponse(id=1905991, encodeId=5d851905991af, content=<a href='/topic/show?id=34953120e52' target=_blank style='color:#2F92EE;'>#准确性#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=48, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=31207, encryptionId=34953120e52, topicName=准确性)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=512a199, createdName=lilianxiang, createdTime=Mon Nov 23 21:51:37 CST 2020, time=2020-11-23, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=2087780, encodeId=08a0208e78064, content=<a href='/topic/show?id=490750196b' target=_blank style='color:#2F92EE;'>#COMMUN#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=43, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=5019, encryptionId=490750196b, topicName=COMMUN)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7931272, createdName=liuli5079, createdTime=Sat Feb 06 17:51:37 CST 2021, time=2021-02-06, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1884674, encodeId=58a218846e46d, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=59, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Tue Dec 08 05:51:37 CST 2020, time=2020-12-08, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1975861, encodeId=e31719e586122, content=<a href='/topic/show?id=4f9b661257b' target=_blank style='color:#2F92EE;'>#深度学习模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=72, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66125, encryptionId=4f9b661257b, topicName=深度学习模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=726030, createdName=Boyinsh, createdTime=Mon May 31 02:51:37 CST 2021, time=2021-05-31, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=887594, encodeId=2c7088e5942e, content=<a href='/topic/show?id=e4cb6612395' target=_blank style='color:#2F92EE;'>#深度学习#</a>深度学习模型目前仍未充分发挥其潜力,该模型可以为复杂的疾病提供可观的独特信息,然而目前还无法从预测的监管注释中推断出该信息的准确。, beContent=null, objectType=article, channel=null, level=null, likeNumber=196, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66123, encryptionId=e4cb6612395, topicName=深度学习)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=a12645, createdName=智智灵药, createdTime=Wed Sep 23 09:52:23 CST 2020, time=2020-09-23, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047851, encodeId=9b91104e85159, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Tue Sep 22 23:51:37 CST 2020, time=2020-09-22, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=887503, encodeId=56e088e5036c, content=<a href='/topic/show?id=e4cb6612395' target=_blank style='color:#2F92EE;'>#深度学习#</a>为基础的<a href='/topic/show?id=d3a024808e0' target=_blank style='color:#2F92EE;'>#人工智能#</a>能逐步改变人类,只是现在还缺少指导手册, beContent=null, objectType=article, channel=null, level=null, likeNumber=260, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66123, encryptionId=e4cb6612395, topicName=深度学习), TopicDto(id=24808, encryptionId=d3a024808e0, topicName=人工智能)], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220519/c2ab253484ee4527a2d4e9589a4821ac/45de9bf494a54becb2ea4369c9d11e85.jpg, createdBy=7a3710, createdName=lovetcm, createdTime=Tue Sep 22 22:00:29 CST 2020, time=2020-09-22, status=1, ipAttribution=)]
    2020-12-08 liye789132251
  4. [GetPortalCommentsPageByObjectIdResponse(id=1905991, encodeId=5d851905991af, content=<a href='/topic/show?id=34953120e52' target=_blank style='color:#2F92EE;'>#准确性#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=48, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=31207, encryptionId=34953120e52, topicName=准确性)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=512a199, createdName=lilianxiang, createdTime=Mon Nov 23 21:51:37 CST 2020, time=2020-11-23, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=2087780, encodeId=08a0208e78064, content=<a href='/topic/show?id=490750196b' target=_blank style='color:#2F92EE;'>#COMMUN#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=43, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=5019, encryptionId=490750196b, topicName=COMMUN)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7931272, createdName=liuli5079, createdTime=Sat Feb 06 17:51:37 CST 2021, time=2021-02-06, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1884674, encodeId=58a218846e46d, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=59, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Tue Dec 08 05:51:37 CST 2020, time=2020-12-08, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1975861, encodeId=e31719e586122, content=<a href='/topic/show?id=4f9b661257b' target=_blank style='color:#2F92EE;'>#深度学习模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=72, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66125, encryptionId=4f9b661257b, topicName=深度学习模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=726030, createdName=Boyinsh, createdTime=Mon May 31 02:51:37 CST 2021, time=2021-05-31, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=887594, encodeId=2c7088e5942e, content=<a href='/topic/show?id=e4cb6612395' target=_blank style='color:#2F92EE;'>#深度学习#</a>深度学习模型目前仍未充分发挥其潜力,该模型可以为复杂的疾病提供可观的独特信息,然而目前还无法从预测的监管注释中推断出该信息的准确。, beContent=null, objectType=article, channel=null, level=null, likeNumber=196, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66123, encryptionId=e4cb6612395, topicName=深度学习)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=a12645, createdName=智智灵药, createdTime=Wed Sep 23 09:52:23 CST 2020, time=2020-09-23, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047851, encodeId=9b91104e85159, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Tue Sep 22 23:51:37 CST 2020, time=2020-09-22, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=887503, encodeId=56e088e5036c, content=<a href='/topic/show?id=e4cb6612395' target=_blank style='color:#2F92EE;'>#深度学习#</a>为基础的<a href='/topic/show?id=d3a024808e0' target=_blank style='color:#2F92EE;'>#人工智能#</a>能逐步改变人类,只是现在还缺少指导手册, beContent=null, objectType=article, channel=null, level=null, likeNumber=260, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66123, encryptionId=e4cb6612395, topicName=深度学习), TopicDto(id=24808, encryptionId=d3a024808e0, topicName=人工智能)], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220519/c2ab253484ee4527a2d4e9589a4821ac/45de9bf494a54becb2ea4369c9d11e85.jpg, createdBy=7a3710, createdName=lovetcm, createdTime=Tue Sep 22 22:00:29 CST 2020, time=2020-09-22, status=1, ipAttribution=)]
  5. [GetPortalCommentsPageByObjectIdResponse(id=1905991, encodeId=5d851905991af, content=<a href='/topic/show?id=34953120e52' target=_blank style='color:#2F92EE;'>#准确性#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=48, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=31207, encryptionId=34953120e52, topicName=准确性)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=512a199, createdName=lilianxiang, createdTime=Mon Nov 23 21:51:37 CST 2020, time=2020-11-23, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=2087780, encodeId=08a0208e78064, content=<a href='/topic/show?id=490750196b' target=_blank style='color:#2F92EE;'>#COMMUN#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=43, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=5019, encryptionId=490750196b, topicName=COMMUN)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7931272, createdName=liuli5079, createdTime=Sat Feb 06 17:51:37 CST 2021, time=2021-02-06, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1884674, encodeId=58a218846e46d, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=59, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Tue Dec 08 05:51:37 CST 2020, time=2020-12-08, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1975861, encodeId=e31719e586122, content=<a href='/topic/show?id=4f9b661257b' target=_blank style='color:#2F92EE;'>#深度学习模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=72, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66125, encryptionId=4f9b661257b, topicName=深度学习模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=726030, createdName=Boyinsh, createdTime=Mon May 31 02:51:37 CST 2021, time=2021-05-31, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=887594, encodeId=2c7088e5942e, content=<a href='/topic/show?id=e4cb6612395' target=_blank style='color:#2F92EE;'>#深度学习#</a>深度学习模型目前仍未充分发挥其潜力,该模型可以为复杂的疾病提供可观的独特信息,然而目前还无法从预测的监管注释中推断出该信息的准确。, beContent=null, objectType=article, channel=null, level=null, likeNumber=196, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66123, encryptionId=e4cb6612395, topicName=深度学习)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=a12645, createdName=智智灵药, createdTime=Wed Sep 23 09:52:23 CST 2020, time=2020-09-23, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047851, encodeId=9b91104e85159, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Tue Sep 22 23:51:37 CST 2020, time=2020-09-22, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=887503, encodeId=56e088e5036c, content=<a href='/topic/show?id=e4cb6612395' target=_blank style='color:#2F92EE;'>#深度学习#</a>为基础的<a href='/topic/show?id=d3a024808e0' target=_blank style='color:#2F92EE;'>#人工智能#</a>能逐步改变人类,只是现在还缺少指导手册, beContent=null, objectType=article, channel=null, level=null, likeNumber=260, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66123, encryptionId=e4cb6612395, topicName=深度学习), TopicDto(id=24808, encryptionId=d3a024808e0, topicName=人工智能)], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220519/c2ab253484ee4527a2d4e9589a4821ac/45de9bf494a54becb2ea4369c9d11e85.jpg, createdBy=7a3710, createdName=lovetcm, createdTime=Tue Sep 22 22:00:29 CST 2020, time=2020-09-22, status=1, ipAttribution=)]
    2020-09-23 智智灵药

    #深度学习#深度学习模型目前仍未充分发挥其潜力,该模型可以为复杂的疾病提供可观的独特信息,然而目前还无法从预测的监管注释中推断出该信息的准确。

    0

  6. [GetPortalCommentsPageByObjectIdResponse(id=1905991, encodeId=5d851905991af, content=<a href='/topic/show?id=34953120e52' target=_blank style='color:#2F92EE;'>#准确性#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=48, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=31207, encryptionId=34953120e52, topicName=准确性)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=512a199, createdName=lilianxiang, createdTime=Mon Nov 23 21:51:37 CST 2020, time=2020-11-23, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=2087780, encodeId=08a0208e78064, content=<a href='/topic/show?id=490750196b' target=_blank style='color:#2F92EE;'>#COMMUN#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=43, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=5019, encryptionId=490750196b, topicName=COMMUN)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7931272, createdName=liuli5079, createdTime=Sat Feb 06 17:51:37 CST 2021, time=2021-02-06, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1884674, encodeId=58a218846e46d, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=59, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Tue Dec 08 05:51:37 CST 2020, time=2020-12-08, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1975861, encodeId=e31719e586122, content=<a href='/topic/show?id=4f9b661257b' target=_blank style='color:#2F92EE;'>#深度学习模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=72, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66125, encryptionId=4f9b661257b, topicName=深度学习模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=726030, createdName=Boyinsh, createdTime=Mon May 31 02:51:37 CST 2021, time=2021-05-31, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=887594, encodeId=2c7088e5942e, content=<a href='/topic/show?id=e4cb6612395' target=_blank style='color:#2F92EE;'>#深度学习#</a>深度学习模型目前仍未充分发挥其潜力,该模型可以为复杂的疾病提供可观的独特信息,然而目前还无法从预测的监管注释中推断出该信息的准确。, beContent=null, objectType=article, channel=null, level=null, likeNumber=196, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66123, encryptionId=e4cb6612395, topicName=深度学习)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=a12645, createdName=智智灵药, createdTime=Wed Sep 23 09:52:23 CST 2020, time=2020-09-23, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047851, encodeId=9b91104e85159, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Tue Sep 22 23:51:37 CST 2020, time=2020-09-22, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=887503, encodeId=56e088e5036c, content=<a href='/topic/show?id=e4cb6612395' target=_blank style='color:#2F92EE;'>#深度学习#</a>为基础的<a href='/topic/show?id=d3a024808e0' target=_blank style='color:#2F92EE;'>#人工智能#</a>能逐步改变人类,只是现在还缺少指导手册, beContent=null, objectType=article, channel=null, level=null, likeNumber=260, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66123, encryptionId=e4cb6612395, topicName=深度学习), TopicDto(id=24808, encryptionId=d3a024808e0, topicName=人工智能)], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220519/c2ab253484ee4527a2d4e9589a4821ac/45de9bf494a54becb2ea4369c9d11e85.jpg, createdBy=7a3710, createdName=lovetcm, createdTime=Tue Sep 22 22:00:29 CST 2020, time=2020-09-22, status=1, ipAttribution=)]
    2020-09-22 CHANGE

    梅斯里提供了很多疾病的模型计算公式,赞一个!

    0

  7. [GetPortalCommentsPageByObjectIdResponse(id=1905991, encodeId=5d851905991af, content=<a href='/topic/show?id=34953120e52' target=_blank style='color:#2F92EE;'>#准确性#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=48, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=31207, encryptionId=34953120e52, topicName=准确性)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=512a199, createdName=lilianxiang, createdTime=Mon Nov 23 21:51:37 CST 2020, time=2020-11-23, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=2087780, encodeId=08a0208e78064, content=<a href='/topic/show?id=490750196b' target=_blank style='color:#2F92EE;'>#COMMUN#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=43, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=5019, encryptionId=490750196b, topicName=COMMUN)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7931272, createdName=liuli5079, createdTime=Sat Feb 06 17:51:37 CST 2021, time=2021-02-06, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1884674, encodeId=58a218846e46d, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=59, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Tue Dec 08 05:51:37 CST 2020, time=2020-12-08, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1975861, encodeId=e31719e586122, content=<a href='/topic/show?id=4f9b661257b' target=_blank style='color:#2F92EE;'>#深度学习模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=72, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66125, encryptionId=4f9b661257b, topicName=深度学习模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=726030, createdName=Boyinsh, createdTime=Mon May 31 02:51:37 CST 2021, time=2021-05-31, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=887594, encodeId=2c7088e5942e, content=<a href='/topic/show?id=e4cb6612395' target=_blank style='color:#2F92EE;'>#深度学习#</a>深度学习模型目前仍未充分发挥其潜力,该模型可以为复杂的疾病提供可观的独特信息,然而目前还无法从预测的监管注释中推断出该信息的准确。, beContent=null, objectType=article, channel=null, level=null, likeNumber=196, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66123, encryptionId=e4cb6612395, topicName=深度学习)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=a12645, createdName=智智灵药, createdTime=Wed Sep 23 09:52:23 CST 2020, time=2020-09-23, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047851, encodeId=9b91104e85159, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Tue Sep 22 23:51:37 CST 2020, time=2020-09-22, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=887503, encodeId=56e088e5036c, content=<a href='/topic/show?id=e4cb6612395' target=_blank style='color:#2F92EE;'>#深度学习#</a>为基础的<a href='/topic/show?id=d3a024808e0' target=_blank style='color:#2F92EE;'>#人工智能#</a>能逐步改变人类,只是现在还缺少指导手册, beContent=null, objectType=article, channel=null, level=null, likeNumber=260, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=66123, encryptionId=e4cb6612395, topicName=深度学习), TopicDto(id=24808, encryptionId=d3a024808e0, topicName=人工智能)], attachment=null, authenticateStatus=null, createdAvatar=https://img.medsci.cn/20220519/c2ab253484ee4527a2d4e9589a4821ac/45de9bf494a54becb2ea4369c9d11e85.jpg, createdBy=7a3710, createdName=lovetcm, createdTime=Tue Sep 22 22:00:29 CST 2020, time=2020-09-22, status=1, ipAttribution=)]
    2020-09-22 lovetcm

    #深度学习#为基础的#人工智能#能逐步改变人类,只是现在还缺少指导手册

    0

相关资讯

Heart:基于深度学习图像分析预测法洛四联症的预后

这项研究提供了使用外部影像数据集训练的机器学习算法自动估算ToF患者预后有效性的数据。

JAMA Oncol:前列腺癌格林森分级的一种深度学习算法的开发和验证

在前列腺癌中,生物活检样本的格林森分级在确定治疗方案中具有关键的作用。然而,Gleason分级与大量观察者间的差异有关,因此需要决策支持工具来改善Gleason分级在常规临床实践中的可重复性。最近,有

Radiology:深度学习帮你在CT上进行肺气肿分级

肺气肿CT分级主要由人工参考Fleischner学会系统评分进行评价,其与生理学功能障碍和死亡风险具有相关性。

Radiology:深度学习帮你看胸片

深度学习具有发挥胸片在临床应用中更大的潜能,但因其规范性、相关疾病差异和不同研究间比较困难而受限。

Eur Urol:深度学习预测肌层浸润膀胱癌分子亚型

肌层浸润膀胱癌(MIBC)是第二大常见的泌尿生殖系恶性肿瘤,并且与具有高的发病率和死亡率。近期研究人员鉴定了MIBC的分子亚型,这具有重要的临床应用。

Nature Machine Intelligence:深度学习实现前列腺癌病理的高准度分析

深度学习(DL)是实现组织结构数字病理识别和分类的有力方法。其在前列腺癌病理中的表现仍旧需要大量的调查。

Baidu
map
Baidu
map
Baidu
map