Baidu
map

Nature Biotechnology:从基因修复到基因不稳定性:AZD7648在基因组编辑中的巨大潜力与风险

2024-12-01 生物探索 生物探索 发表于陕西省

基因组编辑技术发展带来新希望,但同源重组修复(HDR)低效制约精准编辑,AZD7648 可提升 HDR 效率,却也可能引发大规模基因组不稳定性,介绍其作用、风险及相关应对策略,强调临床应用需谨慎权衡。

引言

随着基因组编辑技术的迅猛发展,尤其是CRISPR-Cas9系统的广泛应用,研究人员不仅在基础研究中取得了突破性进展,也为临床治疗带来了前所未有的可能性。基因组编辑技术使得我们能够精确地对基因组进行修改,修复有缺陷的基因,甚至替换致病突变,为治愈遗传性疾病和癌症等重大疾病提供了新的希望。然而,这项技术的应用并非没有代价,特别是当涉及到同源重组修复(HDR)时,其低效性一直制约着精准编辑的实现。HDR虽然能提供精准的基因修复,但在细胞中的修复效率远低于非同源末端连接(NHEJ),后者虽效率更高,却易产生基因组不稳定性,带来潜在风险。

近年来,DNA-PKcs抑制剂AZD7648作为一种提高HDR效率的创新药物引起了广泛关注。通过抑制DNA修复通路中的关键酶DNA-PKcs,AZD7648能够显著促进HDR修复过程,极大地提高了基因编辑的精准性和效率。这一发现为精准医学和基因治疗带来了新的希望,尤其是在需要精确基因替换的疾病治疗中,如遗传性疾病和某些类型的癌症。然而,这项技术的应用并非没有代价。11月27日 Nature Biotechnology报道的研究“Genome editing with the HDR-enhancing DNA-PKcs inhibitor AZD7648 causes large-scale genomic alterations”,发现AZD7648的使用不仅提升了HDR效率,还可能引发一系列严重的基因组不稳定性,包括大规模基因缺失、染色体丢失和重排等。这些基因组变异可能对细胞的正常功能产生重大影响,甚至引发肿瘤等严重疾病。因此,在探索AZD7648及类似技术的临床应用时,我们必须谨慎权衡其提升编辑效率与可能引发的基因组不稳定性之间的风险。

图片

AZD7648在基因组编辑中的作用与风险

近年来,基因组编辑技术,尤其是CRISPR-Cas9系统,给生命科学和医学带来了深刻变革。这种技术使得研究人员能够在特定基因位点引入DNA双链断裂,从而利用细胞内的修复机制进行精准的基因编辑。然而,DNA双链断裂(Double-Strand Break, DSB)可通过不同的修复机制来修复,其中主要包括非同源末端连接(Non-Homologous End Joining, NHEJ)和同源重组修复(Homology-Directed Repair, HDR)等。

通常情况下,NHEJ是一种高效但容易引入小插入或缺失(Indels)的修复途径,而HDR则利用外源DNA模板进行修复,可以实现精确的基因插入或替换。然而,HDR在人体细胞中的效率相对较低,往往无法满足基因治疗等临床应用的需求。因此,如何提高HDR效率成为了研究人员关注的重点。

AZD7648:一种提升HDR的创新手段

在这方面,一种名为AZD7648的DNA-PKcs抑制剂展示出了令人瞩目的潜力。DNA-PKcs(DNA-dependent protein kinase catalytic subunit)是NHEJ通路中的关键酶,抑制其活性可以抑制NHEJ的发生,进而促进HDR的进行。研究表明,AZD7648能够显著提高多种细胞类型中HDR的效率,使得HDR在基因编辑中的应用前景大大增强。

实验结果显示,在使用AZD7648处理K-562细胞和人类造血干细胞(HSPCs)时,HDR率显著提升。例如,在K-562细胞中,短读长测序(Short-read sequencing)显示,HDR比例达到了93%,而使用传统方法时,HDR比例只有约50%。类似地,在人类造血干细胞中,HDR事件也显著增加,显示出AZD7648在提高基因组编辑精确性方面的重要作用。

图片

AZD7648在提高同源重组修复(HDR)效率方面的作用,以及它对基因组的影响,特别是大规模缺失的频率(Credit: Nature Biotechnology

a. 实验的工作流程示意图。K-562细胞通过电转染与Cas9–sgRNA RNP一起导入单链寡核苷酸(ssODN)HDR供体。在电转染后,编辑的细胞用1μM的AZD7648处理3天,然后通过短读长测序(Illumina)和长读长测序(ONT)进行分析。

b. 展示了通过短读长测序检测到的K-562细胞中HDR和插入缺失(indels)的频率。该结果显示,在AZD7648处理后的细胞中,HDR的频率得到了显著提升,但同时也伴随着插入缺失的发生,表明该药物对基因编辑效率的提升存在一定的副作用。

c,d. 通过长读长测序对不同细胞系(RPE-1 p53−/−细胞和造血干细胞,HSPCs)中基因组变异进行了定量分析。具体来说,这两部分量化了编辑细胞中大于一定大小的序列的总读取比例,并且定量了大于1kb的缺失事件。在RPE-1 p53−/−细胞中(c部分),以及在HSPCs中(d部分),大规模的基因组缺失(大于1kb)频率显著增加,表明AZD7648不仅提高了HDR效率,也增加了千碱基级别缺失的频率。

AZD7648的潜在风险:大规模基因组变异

尽管AZD7648提升了HDR效率,但研究发现,其在使用过程中可能引发严重的基因组不稳定性。这些基因组改动包括千碱基(kilobase, kb)级别的大规模缺失、染色体臂的丢失以及基因组重排等,这些大规模的变异往往难以通过常规的短读长测序检测到,导致编辑后基因组状态的潜在风险被低估。

为了更全面地了解AZD7648的影响,研究人员采用了长读长测序(Long-read sequencing)、数字PCR(Droplet Digital PCR, ddPCR)以及单细胞RNA测序(scRNA-seq)等技术进行检测。例如,在RPE-1 p53−/−细胞中,使用AZD7648进行基因编辑后,千碱基级别的大规模缺失事件从未处理时的7.5%增加到14.7%,且在多种细胞背景中,缺失事件的发生率提升了2至35倍。HSPCs中,长读长测序显示在某些靶基因位点,大规模缺失的发生率从10%上升到43.3%。

此外,在一些细胞系中(如K-562细胞),研究人员还发现,AZD7648的处理可能导致整条染色体臂的丢失。例如,在K-562细胞中,使用数字PCR检测表明,AZD7648处理后染色体12的臂丢失发生率达到了20%以上。这种染色体大规模丢失对于基因组的完整性和细胞的正常功能可能具有严重的负面影响,可能导致细胞功能失常甚至细胞死亡。

为什么AZD7648会引起大规模变异?

AZD7648通过抑制NHEJ促进HDR,但它并非选择性地只增强HDR而忽略其他潜在影响。AZD7648的使用会抑制DNA-PKcs这一关键修复酶的活性,而DNA-PKcs不仅仅在NHEJ中发挥作用,它还在整个DNA损伤修复网络中具有重要作用。对DNA-PKcs的抑制可能使得细胞丧失处理某些大规模断裂或结构异常的能力,进而引发大规模的基因组改动,例如染色体臂丢失或重排等。

研究人员还发现,当AZD7648与其他编辑因子联合使用时,如在抑制Polθ的情况下,虽然能够部分减少大规模缺失的发生,但对染色体臂的丢失等问题改善不大,这表明AZD7648引发的大规模基因组变异是多因素协同作用的结果。

从单基因位点到全基因组的影响

为了进一步评估AZD7648的广泛影响,研究人员对多个细胞系进行了实验。在K-562细胞中,通过荧光蛋白(eGFP)报告系统,研究人员观察到,当对eGFP位点进行基因编辑时,AZD7648处理的细胞中,荧光蛋白的表达显著减少,这提示可能发生了与染色体重排或大片段缺失相关的现象。进一步的分析显示,AZD7648的处理可能导致整个染色体臂的丢失,从而使细胞丧失了相关基因的表达。

类似地,在造血干细胞和上呼吸道类器官中,研究人员也观察到了AZD7648导致的染色体大规模缺失现象。单细胞RNA测序(Single-cell RNA sequencing, scRNA-seq)结果显示,这些细胞中某些染色体区域的基因表达显著降低,进一步验证了染色体丢失的可能性。在上呼吸道类器官中,约47.8%的细胞表现出染色体臂的缺失,而在HSPCs中,这一比例为22.5%。

临床应用的谨慎考量

尽管AZD7648在提高HDR效率方面表现出显著优势,但其带来的大规模基因组不稳定性引发了广泛关注。在基因治疗等需要高精度和高安全性的应用场景中,这些潜在的大规模基因组变异可能带来无法预料的后果。因此,在将AZD7648应用于临床之前,必须对其可能带来的所有基因组层面的影响进行全面评估。

例如,在某些情况下,大规模的基因缺失或重排可能影响基因组中其他关键基因的表达,进而引发细胞功能紊乱甚至肿瘤形成。任何可能的基因组不稳定性都会带来长期的风险。这些都要求研究人员在临床应用中要极为谨慎,需采取多层次的检测手段,确保基因编辑的安全性和可控性。

优化基因编辑策略

如何在提高HDR效率的同时,尽量避免不必要的基因组改动,是基因编辑领域的重要研究方向之一。研究人员已经在探索多种可能的解决方案。例如,将AZD7648与其他修复途径抑制剂如PolQi2结合使用,尽管对于一些大规模缺失的减少效果有限,但这类组合治疗策略为实现更安全有效的基因编辑提供了一个潜在的方向。

此外,进一步优化Cas9蛋白和向导RNA(gRNA)的设计,尽量减少非目标位点的切割和基因组的损伤,也是提高基因编辑安全性的有效手段。同时,发展更为精准的基因编辑工具,如基于碱基编辑(Base Editing)或先导编辑(Prime Editing)等新技术,从根本上减少大规模基因组改动的风险。

AZD7648作为一种HDR增强剂,在提高基因组编辑效率方面展现出了巨大的潜力,特别是在某些基因治疗的应用中,有望实现高效的基因校正。然而,其带来的大规模基因组改动如染色体缺失和重排等风险也不容忽视。在实际应用中,如何平衡编辑效率与安全性是一个关键问题,只有通过更加深入和全面的研究,才能确保基因编辑技术在医学和生命科学中的安全应用。

参考文献

Cullot, G., Aird, E.J., Schlapansky, M.F. et al. Genome editing with the HDR-enhancing DNA-PKcs inhibitor AZD7648 causes large-scale genomic alterations. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-024-02488-6

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (2)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=2240145, encodeId=504522401454e, content=<a href='/topic/show?id=7ed041850a1' target=_blank style='color:#2F92EE;'>#基因组编辑#</a> <a href='/topic/show?id=184438981b1' target=_blank style='color:#2F92EE;'>#同源重组修复#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=15, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=38981, encryptionId=184438981b1, topicName=同源重组修复), TopicDto(id=41850, encryptionId=7ed041850a1, topicName=基因组编辑)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=cade5395722, createdName=梅斯管理员, createdTime=Sat Nov 30 23:39:46 CST 2024, time=2024-11-30, status=1, ipAttribution=陕西省), GetPortalCommentsPageByObjectIdResponse(id=2240230, encodeId=4f86224023077, content=好文章,值得一读。, beContent=null, objectType=article, channel=null, level=null, likeNumber=13, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=http://thirdwx.qlogo.cn/mmopen/vi_32/Q0j4TwGTfTJlfgys76DEiaNtbYo2re3ibjrUPTRibEXRyFwAB4aAGiave842S0FQDf0wAoaH226NiaSoPPDzhndsf1g/132, createdBy=88b489038, createdName=yangchou, createdTime=Sun Dec 01 12:57:18 CST 2024, time=2024-12-01, status=1, ipAttribution=浙江省)]
  2. [GetPortalCommentsPageByObjectIdResponse(id=2240145, encodeId=504522401454e, content=<a href='/topic/show?id=7ed041850a1' target=_blank style='color:#2F92EE;'>#基因组编辑#</a> <a href='/topic/show?id=184438981b1' target=_blank style='color:#2F92EE;'>#同源重组修复#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=15, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=38981, encryptionId=184438981b1, topicName=同源重组修复), TopicDto(id=41850, encryptionId=7ed041850a1, topicName=基因组编辑)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=cade5395722, createdName=梅斯管理员, createdTime=Sat Nov 30 23:39:46 CST 2024, time=2024-11-30, status=1, ipAttribution=陕西省), GetPortalCommentsPageByObjectIdResponse(id=2240230, encodeId=4f86224023077, content=好文章,值得一读。, beContent=null, objectType=article, channel=null, level=null, likeNumber=13, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=http://thirdwx.qlogo.cn/mmopen/vi_32/Q0j4TwGTfTJlfgys76DEiaNtbYo2re3ibjrUPTRibEXRyFwAB4aAGiave842S0FQDf0wAoaH226NiaSoPPDzhndsf1g/132, createdBy=88b489038, createdName=yangchou, createdTime=Sun Dec 01 12:57:18 CST 2024, time=2024-12-01, status=1, ipAttribution=浙江省)]
    2024-12-01 yangchou 来自浙江省

    好文章,值得一读。

    0

相关资讯

默克的基础基因组编辑技术获得澳大利亚CRISPR切口酶专利

充满活力的科技公司默克(Merck)今天宣布,澳大利亚专利局(Australian Patent Office)已经批准了该公司的配对规律成簇的间隔短回文重复(CRISPR)切口酶使用专利申请。配对切口酶是提高安全性的有效措施,通过高度灵活且有效的脱靶效应降低方法推动特异性。这可提高 CRISPR 固定患病基因同时不影响健康基因的能力。默克执行董事会成员兼生命科学首席执行官吴博达(Udit Bat

《Science》热评:基因组编辑不是体外受精

“贺建奎谈到了IVF(体外受精)之父Robert Edward,他认为Edward是一个英雄,是一个突破规范的打破者,一个扰乱者,他希望能模仿他。这给我留下了深刻的印象。”

Nat Commun :武汉大学徐永镇团队在脊肌萎缩症的次要剪接调控研究取得新进展

脊髓性肌萎缩症(Spinal Muscular Atrophy, SMA)是一类主要由SMN基因缺陷引起的运动神经元变性和肌肉萎缩遗传性疾病,在我国新生儿中的患病率为1/10000-1/6000。

Cell Rep:临床多重耐药菌基因组编辑研究取得进展

直接在临床分离的多重耐药菌中进行功能基因组学研究是解析耐药机制以及开发抗耐药策略最直接有效的方法。然而,由于缺乏能在临床耐药菌中直接进行高效基因编辑的工具,目前耐药机制仍主要是采用组学分析加在模式菌中的异源验证进行研究。这种脱离了临床耐药菌本身遗传背景的研究策略,往往忽略了遗传背景本身对耐药因子的影响以及不同耐药因子之间的相互关系,很多时候无法对临床抗耐药研发提供真正有效的依据。开发一种能与临床菌

PNAS:精准基因组编辑有望治疗遗传性视网膜疾病

这篇论文描述了目前治疗遗传性视网膜退行性疾病的临床前成功和临床基因组编辑方法,并强调体内基因编辑有希望成为IRD的未来治疗模式。目前,对于这些通常导致失明的破坏性疾病,还没有有效的治疗方法。

最新Nature大子刊:大幅减少基因编辑副作用!

本研究发现 Cas9 核酸酶易产生大基因组缺失,研究优化测序和算法,对比 Cas9、碱基编辑器和素数编辑器,揭示产生大缺失机制,为避免问题提供见解。

最新Nature NBE:定制重链抗体以重新编程人类B细胞

人类B细胞可以在免疫球蛋白重链位点进行编辑,以表达仅支持重链的抗体,这些抗体支持片段可结晶结构域和抗原结合结构域的改变,这可以基于抗体和非抗体成分。

JACS:上海科技大学季泉江组研发出“超级细菌”基因组编辑新技术

日前,国际期刊《Journal of the American Chemical Society》杂志上在线发表了上海科技大学物质学院(材料生物学研究部)季泉江助理教授课题组在人类致病菌金黄色葡萄球菌(包括其中的“超级细菌”)中首次建立起基于CRISPR/Cas9系统的、高效快速的基因组编辑方法。研究成果题为“Rapid and Efficient Genome Editing in Staphy

Nat Biotechnol:“基因魔剪”准确性低于预期

英国《自然·生物技术》杂志 16 日 在线发表 了一项重要研究:有“基因魔剪”之称的 CRISPR-Cas9 基因组编辑技术,在靶点附近引起的 DNA 删除或重排,比科学家此前预期得要严重。该发现意味着,研究人员必须密切观察基于 CRISPR-Cas9 疗法对编辑后细胞造成的序列变化。

PLAST RECONSTR SURG:CRISPR基因组编辑有望用于整形外科中

CRISPR基因组编辑技术有望成为基因工程和治疗的“变革性飞跃”,它几乎影响到医学的每个领域。根据2018年11月发表在美国整形外科学会(American Society of Plastic Surgeon)官方期刊Plastic and Reconstructive Surgery上的一篇标题为“CRISPR Craft: DNA Editing the Reconstructive Ladd

Baidu
map
Baidu
map
Baidu
map